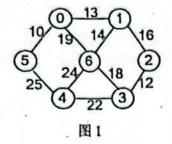
1202/

院(新	系、专业)	班级	学号	姓名
请考	生注意:			
1.答:	案请写在答题纸上	, 写在试卷上一律无法	发! ···	•
2.考;	试完毕,请将答题	纸和试卷交给监考老,	师,不得带出考试	药!
装 订		(每小题 2 分,共 20 中基本逻辑结构有树形结构	Real and the second sec	_结构和集合结构。
线	2、散列表中,	H为散列函数,若H(42)=H(12),贝42,	12 相对于散列函数
内·H而言	言称为。		astrony Maria	
不 3、堆	栈中 Top 指向栈顶方	元素,判断堆栈为空的条 (牛是•	Sector 1
4、利	用 AOE 网进行工程	· 安排,完成工程所需的最	短时间是指从开始	结点到完成结点
要的	路径的长度,这	这条路径被称为关键路径。		
答 5、若	对某算法求得关键步	。 导骤执行次数 f(n) = 20+30	nlog-n+40n,则其	渐近时间复杂度为
-				
6、设	森林F对应的二叉构	对为B,它有n个结点,B	的根为 r, r 的右子	子树结点个数为 m,
则F中	中第一棵树的结点个	数是。	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	к
7、5>	<8 的二维数组按行	优先存储,第一个数组元	素 a[0][0]的存储地	址是 100,每个元
素占有	育2个存储单元,则	数组元素 a[3][6]的存储地	址是。	
1.	性表采用对半搜索业 序存储结构。	须满足两个条件:(1)线性	表必须是;	(2)存储结构必须采
9、在	含n个顶点和e条边	2的有向图的邻接矩阵中,	零元素的个数为_	•
10, 7	告某二叉树的后序遍	历序列为:CDAEF,此	二叉树的根 结点是	· · · · · · · · · · · · · · · · · · ·
得分	二、选择题	(每小题2分,共20分	})	
		关注了 B, B 关注了 A,	C也关注B,则表	示这种关注关系最
1	合适的数据结构	/	1±' n -	- 17 - 10+ 1
	A.树 . I	3.图 C.散列		之又树 '

۰.


(数据结构)期末试卷 第1页共4页

2、以下关键字序列____是一个最小堆。 A. 12, 72, 31, 25, 99, 58 D. 12, 25, 58, 31, 99, 72 3、后缀表达式: 8 4 4 + / 3 3 * +的值为____ A.10 B. 12 D. 以上答案都不正确 C.7 4、对希益矩阵采用三元组方式存储的最主要目的是_ A. 使衰达变得简单 B.使矩阵元素的存取变得简单 C. 去掉矩阵中的多余元素 D.压缩存储空间 5、冒泡排序在最好的情况下的渐近时间复杂度是___ A. O(n) B. $O(\log_2 n)$ C. $O(n^2)$ D. $O(n\log_2 n)$ 6、已知一棵完全二叉树的第6层(设根为第1层)有8个叶结点,则该完全二叉树的结 点个数最多是 A. 52 B. 111 C. 119 D. 127 7、对半搜索有序表 (10,30,36,41,52,54,66,73,84,97), 在表中搜索关键字 34, 则它将依次 与表中 比较大小,最终搜索失败。 A. 52,41,30 B. 54,84,66 C. 52.30.36 D. 54,73.66 8、二叉搜索树中,关键字最大的结点 . A. 左子树一定为空 B. 右子树一定为空 C. 左右子树均为空 D. 左右子树均不为空 9、如杲线性表最常用的操作是读取第 i 个元素的值,则采用 存储方式最节省 时间。 A. 顺序表 B. 带表头结点的单链表 C. 不带表头结点的单链表 D. 双向链表 10、设有向图 G 的边集为<0,1>,<1,2>,<4,1>,<4,5>,<5,3>,<2,3>,则下面不属于该图的拓 扑排序的是 A. 041253 B. 402153 C. 045123 D. 401523

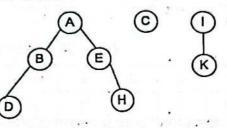
得分 三、简答题 (每小题 8 分,共48 分)

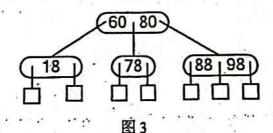
1、如图 1 所示顶点表示小区,边表示连接小区间的光纤,边上的权表示铺设

《数据结构》期末试卷 第2页共4页

2、对长度为13的有序表(假定下标从0开始标记)进行对半搜索,请画出对应的二叉 判定树。

3、请将图2所示的森林转成二叉树。




图 2

4、已知散列表如下所示,长度 M=11,依次输入关键字 17,18,37,74,试以双散列法解 决冲突,散列函数为 h₁(key)=key%11, h₂(key)=key%9+1,请填写散列表。

下标	0	1	2	3	_4	5	6	7	8	9	10	
元素						5	6		41			t

5、(1)从图3所示的3阶B-树中插入35,画出插入新元素后的B-树。

(2) 在(1)所得3阶B-树的基础上再插入47,画出插入新元素后的B-树。

6、已知一组序列为: 55, 80, 66, 40, 42, 88.

(1) 请给出第一趟快速排序的结果。

19 -

(2) 请写出最坏情况下,快速排序的时间复杂度。

《数据结构》 期末试卷 第3页共4页

四、算法设计题(每小题6分,共12分)

1、二叉搜索树 T 用二叉链表存储结构表示,编写算法按递减顺序打印 T 中 元素关键字的值。 相关结构体定义如下:

typedef struct elemtype { int Key;

char Data;

} ElemType;

typedef struct bstnode {

ElemType Element; struct bstnode *lchild; struct bstnode *rchild;

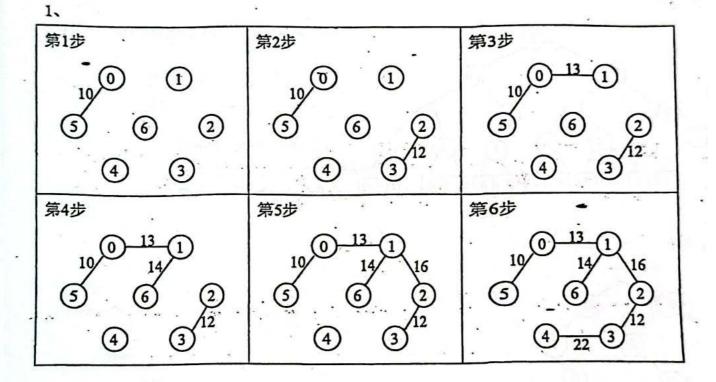
}BSTNode;

2、不带表头结点的单链表中元素各不相等,编写算法找出所有元素的最大值与链表第一个结点的值进行交换,如果成功,返回1;否则,返回0。 相关结构体定义如下: typedef struct node

{
 ElemType element;
 struct node *link;
}Node;

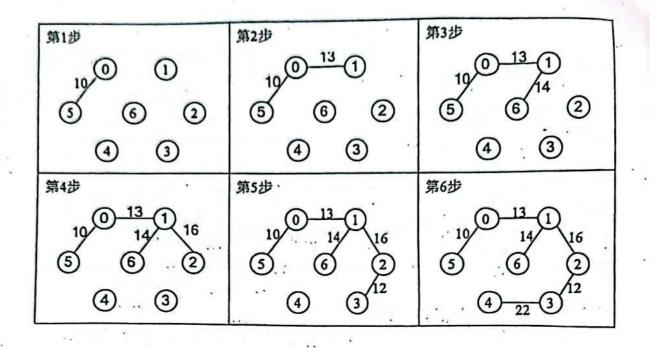
typedef struct singleList
{
 struct node * first;
 int n;

}SingleList;

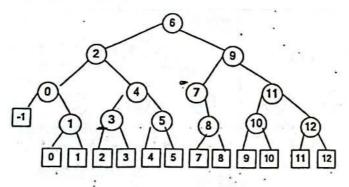

《数据结构》期末试卷 第4页共4页

一、 均	真空题(每小人	题2分,共	20分)						
题号	1.	2	3	4	5	6	.7	8	9	10
答案	图形	同义词	Top=-1	最长	nlog2n	n-m	160	有序	n'-e	. F

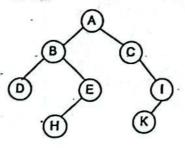
二、单项选择题(每小题2分,共20分)


题号	1	2	3	4	5	6	7	8	9	10
答案	В	D	A	D	. A .	B	C	B	Α	B

三、简答题(每小题8分,共40分)


或者

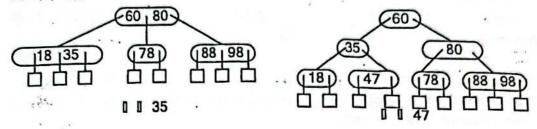
参考答案 第1页共4页



最小代价生成树的代价为87 每步1分,代价计算正确得2分

2、8分

3、8分



参考答案 第2页共4页

4、每个2分

下标	0	1	2	3	4	5	6	7	8	9	10
元素	74			,	17	5	6	18	41		37

·5、每个4分

6.

第一趟排序后序列为: 40, 42, 55, 66, 80, 88(6分) O(n²) ... (2分)

四、算法设计题(共12分)

1、6分

```
Void ReduceOrder (BSTNode * p)
```

if(!p) return ;

else {

}``

reduceOrder(p->rchild); 4分 printf("%d", p->Element.Key;); ReduceOrder (p->lchild);

}

```
2、6分
```

int Swap().

ť

....

if(!first)

return 0; Node *p,*max; ElemType temp;

参考答案 第3页共4页

- 2分

7

p= first-> link; max = first; while(p) { if(p->element >max->element) max = p;

p = p->link;

if(max |= p)

}

}

}

2分

: **

2分

2分

{
 temp = first->element;
 first->element = max ->element;
 max ->element = first->element;

return 1;

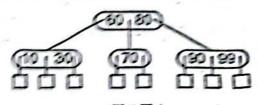
参考答案 第4页共4页

院(系、专业)	班级	学号	姓名
请考生注意:			
1.答案请写在答题纸上, 写在	试卷上一律无效	1	·** .
2.考试完毕,请将答题纸和试			2 G
得分 一、填空题(每小	题2分,共20分	})	
1、线性表的链式存储	者结构中,通过	表示元素之间的关	关系.
2、对 n 个元素的序列	刘执行冒泡排序最 如	子情况下算法需要执行	亍趟排序。
3、AOE 网中的关键路径是源点到	创汇点之间	路径。	
4、以38, 45, 93, 28, 14, 79,	59 为输入序列建	立二叉搜索树,在此	二叉搜索树中删
除 79 后,此二叉搜索树的根结点			
5、下列程序段中划线语句的渐近	丘时间复杂度为	• ••	
i=1; y=0;			
do{			
y++; i=2*i;			
}while(i <n).< td=""><td></td><td>10.000</td><td>4</td></n).<>		10.000	4
	· · · · · ·		
6、a*(b+c)-d 的后缀表达式是	®		
2、不带表头结点的单链表中,f	first 为头指针,当	[时,个情	农头结点的早往
为空。			
8、已知高度为 3 的二叉平衡树	中至少有 4 个结		叉平衡树上至少有
个结点,则高度为5的二叉平衡	厨树上至少有	结点。	
9、在含n个顶点和e条边的无	向图的邻接矩阵中	中,零元素的个数为	9•
10、一棵有 n 个结点的满二叉材	オ方	人叶工任占	Standard Sciences

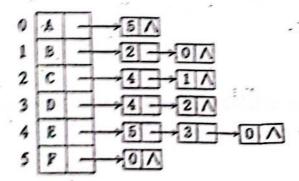
(数据结构)期末试卷 第1页共4页

得分 二、选择题(每小题2分,		
	又树 T, F 中叶结点的个数等于	•
A.T中叶结点的个数	B.T中度为1的结点个数	
C.T中左孩子指针为空的结点个数	D.T 中左孩子指针为空的结点个数	
2、设顺序表长度为 n, 则在位置 i (i= -1, (,1,2,,n-1)后插入元素需要移动_	个
元素.	÷	•
A. n-i-l B. n-i		
3、以下关键字序列是一个最小		
A. 10, 72, 31, 25, 99, 58 C. 10, 58, 25, 99, 31, 72	B. 99, 25, 31, 72, 10, 58	
4、已知图的边集合 E(G)={<6,1>,<1,2>,< 的拓扑序列之一。	4,1>,<4,5>,<5,3>,<2,3>},则序列	是该图
A. 6, 3, 4, 5, 1, 2 B. 6, 1, 2, 3, 4, 5	C. 4, 5, 6, 1, 2, 3 D. 4, 3, 5, 2,	1,6
5、设循环队列的元素存放在一维数组 Q		
一个位置, rear 指示队列尾结点。如	是队列中元素的个数为 10, front 的值	为 25, 则
rear应指向的元素是。		
A. Q[4] B. Q[5]		
6、对半搜索有序表(10,30,36,41,52,54,6	6,73,84,97),在表中搜索关键字 34, 5	则它将进行
次比较最终搜索失败。		
A. 2. B. 3	C. 4 D. 5	
7、以55,30,17,12,16,13建立二		
A. 13 B. 16	C. 30 D. 55	
8、若从无向图的任意一个顶点出发进行		i点,则该图
一定是。		
A. 非连通图 B. 连通图	C. 强连通图 D. 完全图	••
9、利用哈夫曼算法构造出来的树是	•	
A. 二叉排序树 B. 扩充二叉树	C. AVL树 D. 完全二	叉树
10、若数据元素序列 10, 12, 13, 7,		
第二趟排序后的结果,则该排序算法只	能是•	
A. 冒泡排序 B. 快速排序	C. 简单选择排序 D. 直	接插入排序
● 分 三、简答题(每小题8分	+,共48分)	· · · ·
	= 11, 散列函数是 H(key) = key % 1	1. 现采用一
	列表如下所示,依次插入关键字3、	
请填写散列表。		201 JTI JTI
13 75 - 567 142.0		-

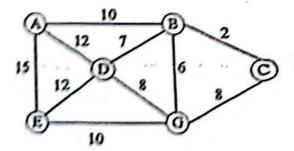
下标	0	1	2	3	4	5	6	7	8	9	10
元素				80	48						43


《数据结构》期末试卷 第2页共4页

2。将属2面所示的二叉原则多成液冰。


夏2至

3、苏联3区所示的4阶及其中依次插入41、51。分别画出插入新元素后的8-岗。


題3至

4、已知图 G 的邻接表如愿 4 图所示,若以项点 B 为自发点,诸分别写出深度优先搜索 和宽度优先搜索的项点序列。

覓4徑

5。如复5 部所示为一个地区的交通网,项点表示域市,边表示连接域市间的公路,边上 的权表示修建公路需花费的造价。现在需要选择能够沟通每个域市且总造价最省的5条 公路,诸画出所有可能的方案,并给出该工程的总造价。

题5图

(数据结构) 期末试卷 第 3 页 共 4 页

须

6、对元素序列49,38,66,82,13,53,3按教材中冒泡排序算法进行排序。 (1)写出第一趟冒泡排序的结果。

(2) 写出最好、最坏和平均情况下冒泡排序的渐近时间复杂度。

四、算法设计题(每小题6分,共12分) 1、设二叉搜索树以二叉链表结构表示,结点结构体定义为:

typedef struct { int element;

BSTNode *lchild;

BSTNode *rchild;

}BSTNode;

试设计算法输出二叉搜索树中的最大值。

void PrintMax (BSTNode *r) //r 为二叉搜索树的根结点

2、已知单链表中的元素有序非递减排列,请编写算法删除表中所有值相同的元素。 结构体定义如下:

```
typedef struct node
```

```
·{
```

}

{

}

ElemType element; struct node *link; }Node;

typedef struct singleList
{

struct node * first; int n; }SingleList;

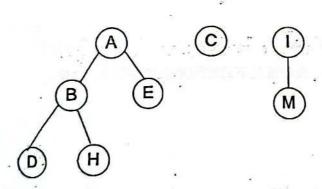
void delete(SingleList *L)
{

(数据结构)期末试卷 第4页共4页

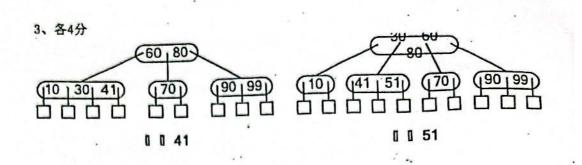
一、填空题(每小题2分,共20分)。

题号	1	2	3	4	5	6	7	8	9	10
答案	结点指 针或指 针	1	最长	38	O(log2n)	abc+*d-	first = = NULL	12	n ² -2e	(n+1) /2

二、单项选择题(每小题2分,共20分)

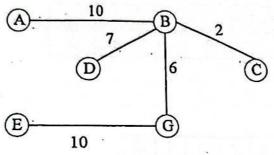

题号	1	2	3	4	5	6	7	8	9	10	
答案	С	A.	D	С	В	В	В	В	B	D	1.

三、简答题(每小题8分,共40分)


1,

下标	0	1 -	2	3	4	5	6	7	8	9	10
元素	54	34	3	80	48			25			-43

2、8分



参考答案 第1页共3页

(1) 深度优先搜索序列: BCEFAD (4分) (2) 宽度优先搜索序列: BCAEFD (4分)

5、(1)该工程只有一种可能的方案

(6分)

(2) 该工程的总造价为: 10+2+7+6+10=35. (2分)

(1) 第一趟冒泡排序的结果: 38 49 66 13 53 3 82 (5分) (2) 平均和最坏情况的时间复杂度为O(n²);最好情况下的时间复杂度为O(n).(3分)

四、算法设计题(共12分)

1、6分

6.

4.

void PrintMax (BSTNode *r)
{

int max; BSTNode *p; p=r; (2分) while(p->rChild) (2分) p=p->rChild;

参考答案 第2页共3页

```
max = p->element; //获得最大值 (2分)
   printf("最大值是 %d\n", max);
2.6分
void delete(SingleList *L)
Node *q,*p;
 q=L->first;
                    (2分)
 if (q=NULL)
  return;
 p=q->link;
while(p)
   if (p->element=q->element)
                              (2分)
   {
     q->link=p->link;
     free(p);
     p=q->link;
   }
                            (2分)
   else
   {
  . q=p;
    p=p->link;
   }
return;
 Sec.
 . 6 ...
                             参考答案 第3页共3页
```

}

{

{

}

}

Į.

2

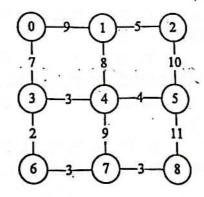
t

12.3 院(系、专业) 341 634 请考生注意: 1.答案请写在答题纸上,写在试卷纸上一律无效! 2.考试完毕,请将答题纸和试卷纸交给监考老师,不得带出考场! 一、填空题(每空2分,共计20分) 得分 1、数据结构的逻辑结构包括线性结构、___(1)___、图形结构和集合结构。 2、后缀表达式 ab+2^cd*+对应的中缀表达式为 (2) . 3、两个集合元素的关键字为 key1 和 key2, 给定散列函数 H, 如果 key1 ≠ key2 但是 H(key1)=H(key2),则这种现象称为___(3)___。 4、将4×5的二维数组A按行优先顺序存储到一维数组B中,则B[14]存储的二维数组元素 是___(4)___(A[i][i]表示二维数组元素,i和j为行列下标,数组A、B下标均从0开始计数)。 5、在有序表12,14,36,51,58,70,85,92上查找55,若执行顺序搜索至少需要比较____次 查找失败;若执行对半搜索,需要比较 (6) 次查找失败。 6、利用一维数组 A 实现循环队列,数组长度为 10,当 front=7, rear=2 时,队列中元素 个数为___(7)__,最多再连续入队___(8) 个元素时队列荡。 7、若4阶B-树上有25个失败结点,则该B-树上每个结点中关键字个数量少为 (9) B-树上关键字总数为 (10) 得分. 二、选择题(每小题2分,共计20分) 1、以下程序段的算法渐近时间复杂度为(). void Func (int n) { for (int i = 1; i < n; i++) {i *= 2; printf("%i\n", i); }}</pre> $B, O(n \log_n)$ $D_{n} O(n)$ A. $O(\log, n)$ $C = O(\sqrt{n})$ 2、已知一棵二叉树结点的先序遍历序列为: B, A, F, E, D, C, 中序遍历序列为 A, F, B, D, C, E, 则二叉树的后序遍历序列是(). A. E, D, A, C, F, B B. E, D, C, A, F, B C. F, A, C, D, E, B D. F, D, C, A, E, B 3、包含287个结点的完全二叉树的高度是(). C. 10 D. 11 B. 9 A. 8 4、一棵二叉树中叶结点个数为21, 度为1的结点个数为25, 度为2的结点的个数为()。 C. 24 D, 26 A. 20 B. 22 5、关于堆,以下说法错误的是(). B、序列64, 55, 39, 42, 27, 6是最大堆 A、序列23, 35, 38, 75, 69, 96是最小堆 C、序列55, 56, 54, 52, 67, 31不是最大堆 D、序列89, 36, 32, 8, 86, 11是最大堆

(数据结构)期末考试(A卷) 第1页共4页

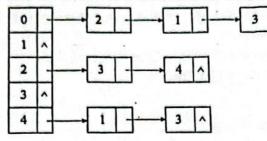
6、设有5×5的数组A,其每个元素占2个字节,已知A[3][1]在内存中的地址是132 (数组 下标从0开始计数),按行优先顺序存储,A[2][3]的地址是(). D. 130 C. 128 B. 126 A. 124 7、堆栈和队列的主要区别是(). B、存储结构不同 A、逻辑结构不同 D、运算结构不同 C、限定元素插入和删除的位置不同 8、以下哪些算法是稳定的(). B、合并排序和简单选择排序 A、冒泡排序和合并排序 D、堆排序和冒泡排序 C、直接插入排序和堆排序 9、向空二叉平衡树依次插入关键字为82,69,24,94的元素后,二叉平衡树根结点的关键 字是(). C. 24 A. 82 D. 94 ··· B、 69). 10、关于散列表,以下说法正确的是(B、选择合适的散列函数可以避免冲突 A、除留余数法可以解决冲突 D、散列表中元素存储位置与关键字值相关 C、散列函数越复杂发生冲突概率越小

三、简答题(每题8分,共计40分)


得分

1、已知英文字母 A,B,C,D,E,F,G,H 及其对应权值 21,24,22,29,4,1,6,16, 请给出 以上英文字母的哈夫曼编码,要求该编码对应的哈夫曼树上左分支编码为 0, 右分支 编码为 1, 且任意结点的左孩子权值不大于右孩子权值。

2、给定一个长度为 11 的散列表 ht 如下所示,采用<u>双散列法</u>解决冲突,两个散列函数 分别为: h1(key)=key%11, h2(key)=key%9+1.请向散列表依次插入关键字为 42,91,64,53 的集合元素,给出插入完成后的散列表。


i	0	1	2	3	4.	5	6	7	8	9	10
-ht[i]		12	24	31			97			9	

3、请用普里姆算法以<u>顶点 2 为起点</u>构造下图的最小代价生成树, 要求画出最小代价 生成树的构造过程。

(数据结构)期末考试(A卷) 第2页共4页

4、 給定有向图的邻接表存储结构如下图所示,请给出从<u>顶点0</u>出发可以得到的深度 优先遍历序列和宽度优先遍历序列(按照教材给定程序执行)。

5、对序列 68, 42, 61, 86, 38, 97, 20, 76 升序排序, 请给出下列算法的第一趟排序结果:

(1) 直接插入排序: (2):简单选择排序: (3) 两路合并排序: (4) 快速排序: 四、算法填空题(每空2分,共计10分) 得分 将Entry类型数据元素存储在List类型的线性表中,Entry与List类型定义如下: typedef struct list{ typedef struct entry{ KeyType key; int n; DataType data; Entry D[MaxSize]; }Entry; }List; 请完成冒泡排序算法。 void BubbleSort(List *list) imi,j; /*i标识每趟排序范围最后一个元素下标*/ £ for((1) ; i>0; i-) { BOOL isSwap = FALSE; /*标记一趟排序中是否发生了 元素交换*/ for(j=0; (2) ; j++) if(list-D[j].key > list-D[j+1].key){ Swap(list->D, j, (3)); /*交换操作*/ 3 ł if(_(5)_) break; /*如果本趙排序没有发生元素交换, 排序完成*/ 3 }

(数据结构) 期末考试 (A卷) 第3页共4页

得分

五、编程题(每题5分,共计10分)

设二叉树以二叉链表方式存储,设二叉树结点和二叉树结构体定义如下:

typedef struct binode {

ElemType element; // ElemType 为可比较类型 struct binode* lchild, *rchild;

}BTNode;

typedef struct binarytree { BTNode* root; }BinaryTree;

试编写递归程序, 实现:

(1) 查找二叉树中最大的数据元素

提示:通过设计如下两个函数实现,其中一个为递归函数;如果最大值不吃一 仅要求返回一个即可;不用考虑树为空的情况。

ElemType MaxofBT(BinaryTree Bt)

ElemType Max(BTNode *p)

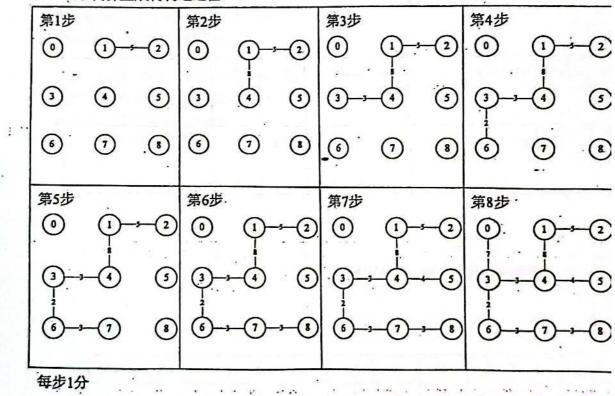
(2) 求二叉树的高度

提示: 通过设计如下两个函数实现, 其中一个为递归函数. int DepthofBT(BinaryTree Bt)

int Depth(BTNode *p)

(数据结构)期末考试(A卷) 第4页共4页

院(系、专业)____ 姓名 学号 班级 五 总分 题号 -= 29 得分 请考生注意: 1.答案请写在答题纸上,写在试卷上一律无效。 2.考试完毕,请将答题纸和试卷交给监考老师,不得带出考场。 一、填空题 (每空2分,共计20分) 得分 Ł 1 (4) A[2][4] (3) 冲突 (5) 5 (1) 树形/树形 (2) (a+b)^2+c*d ; 结构/树 Ę (10) 24 ł2n (9) 1 (6) 3 (7) 5 (8) 4 2 二、选择题 (每题2分,共计20分) 得分 题号 1 2 3 4 5 6 7 8 9 10 Ċ 答案 A B Ά. D C B A B D (数据结构) 期末考试(A卷) 答案 第1页共4页


1. 一个编码1分 字母	哈夫曼编码	字母	哈夫曼编码
	110	E.	01001
A	00	F	01000
<u> </u>	111	G	. 0101
C		H	011

2、一个关键字2分

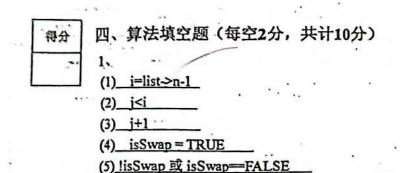
• •

٠i	. 0	1	2	3	4.	5	6	7	8	9	10
ht[i]	64	12	24	31	•	42	97	91	1.2	9	53

3. 最小代价生成树构造过程:

(数据结构)期末考试(A卷)答案 第2页共4页

 深度优先遍历序列: 0,2,3,4,1 宽度优先遍历序列: 0,2,1,3,4


5. 一题2分

(1) 直接插入排序, 42, 68, 61, 86, 38, 97, 20, 76

(2) 简单选择排序: 20, 42, 61, 86, 38, 97, 68, 76

(3) 两路合并排序: 42, 68, 61, 86, 38, 97, 20, 76

(4) 快速排序: 38, 42, 61, 20, 68, 97, 86, 76

得分 五、编程题(共计10分) (1) 求最大值

ElemType Max(BTNode *p)

ElemType Imax=rmax=MIN; //MIN 为预定义的一个最小值

```
if (p->lchild=NULL&&p->rchild=NULL)
```

return p->element; //1 分

if (!p->lchild)

lmax = Max(p->lchild); //1 分

if (lp->rchild)

rmax = Max(p->rchild); //1 分

ElemType chmax = lmax; //1 分, 比较左右子树最大值和 p 结点值, 返回三者最

//大值

if(max> chmax)

(数据结构)期末考试(A卷)答案 第3页 共4页

23

chmax=rmax; if(chmax>p->element) return chmax; return p->element;

ElemType MaxofBT(BinaryTree Bt) { return Max(Bt.root); //1 分

(2) 求二叉树的高度 int Depth(BTNode *p) { int lh, rh; if (!p) return 0; lh = Depth(p->lchild); //1 分 rh = Depth(p->rchild); //1 分 if (lh > rh) return lh+1; //1 分 return rh + 1; //1 分

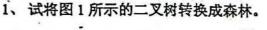
}

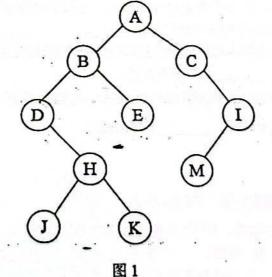
}

}

int DepthofBT(BinaryTree Bt) { return Depth(Bt.root); //1 分

++++ (1卷)答案 第4面共4页


姓名 坐号 院(系、专业) 班级 请考生注意: 1.答案请写在答题纸上,写在试卷纸上一律无效! 2.考试完毕,请将答题纸和试卷纸交给监考老师,不得带出考场! 一、填空题(每空2分,共20分) 得分 1、在具有 m 个单元的循环队列中,队满时共有个_____数据元素, 2、下列程序段中划线语句的渐近时间复杂度为_ i=1; y=0; do{ y++; i=2*i; }while(i<n) 1、除二叉链表结构之外,完全二叉树也可以采用__ 1、二叉平衡树上的平衡因子有 种不同的值。 5、后缀表达式: 642+/32*+的值为 ... i、二叉树的先序遍历序列为 ABDEGCF,中序遍历序列为 DBGEACF,该二叉树根结 与的左孩子结点是 1、设有 10×10 的整型数组 A,其每个元素占 4 个字节,已知 A[0][0]在内存中的地址 是 200,按行优先顺序存储,A[4][6]的地址是_____ 1、设 W={3,2,4,5,1},以此权值集合构造的哈夫曼树的加权路径长度为 1、高度为5的满二叉树共有_____个分支结点。 .0、已知图的边集合 E(G)={<0,1>,<1,2>,<4,1>,<4,5>,<5,3>,<2,3>},若采用邻接表存储, 则顶点4对应的边结点单链表中共有 个边结点。 二、选择题(每小题2分,共20分) 得分 1、在移动营业厅通过"取号、叫号"办理业务的服务模式符合_____特征。 · D. 二叉树 B. 堆栈 C. 队列 A. 最小堆 边. 1、设某强连通图中有n个顶点,则该强连通图最多有_ D. $n^{*}(n+1)$ L.n B. n*(n-1) $C. n^{*}(n-1)/2$ 」、若入栈序列是 a, b, c, d, 则不可能得到的出栈序列为_ . D. b, c, d, a 1. c, b, a, d B. c, b, d, a C. d, b, c, a


《数据结构》 期末考试 第 1 页 共 4 页

4、已知图的边集合 E(G)={<6,1>,<1,2>,<4,1>,<4,5>,<5,3>,<2,3>},则序列______是该 图的拓扑序列之一。 A. 6, 3, 4, 5, 1, 2 B. 6, 1, 2, 3, 4, 5 C. 4, 5, 6, 1, 2, 3 D. 4, 3, 5, 2, 1, 6 B. 所需空间与线性长度成正比 • A. 可随机访问任一元素 D. 插入、删除不需要移动元素 C. 不必事先估计存储空间 6、以下关键字序列_____是一个最小堆。 B. 99, 25, 31, 72, 10, 58 A. 10, 72, 31, 25, 99, 58 C. 10, 58, 25, 99, 31, 72 D. 10, 25, 58, 31, 99, 72 7. 在下列排序算法中, 的比较次数与元素的初始排列状态无关。 C. 直接插入排序 D. 简单选择排序 A.冒泡排序 B.快速排序 8、利用哈夫曼算法构造出来的树是 . A. 二叉排序树 B. 扩充二叉树 C. AVL树 D. 完全二叉树 9、设 AVL 树中任一结点的子树为 t1 和 t2,则 t1 和 t2 的高度不可能为__ A. 2和0 B. 0和1 C.3和4 D. 10和11 10、在不带表头结点的单链表中,当满足 时,单链表为空。 B. first->link = NULL A. first = NULL C. first->link = first D. first != NULL

三、简答题(每题7分,共42分)

得分

(数据结构) 期末考试 第 2 页 共 4 页

2 设证是长度为13的裁列表,采用二次探查法解决冲突,数列函数为:bikey)=keg%13, 试用关键字值序列63,24,27,59,39,88,49 建立数列表。

	0	1	2	3	4	5	6	7	8	9	10	11	12
ht	78						-		-			-	-
			1				1		1	1			

3、已知关键字序列为 12, 18, 27, 35, 56, 80, 试依照此顺序插入一禄空的 3 阶 B-树, 请给出完成所有元素插入之后的 B-树; 然后删除其中的关键字 12, 请给出删除 12 之后的 B-树。

4、对于下图 2 所示的带权无向图,请给出其对应的邻装矩阵。

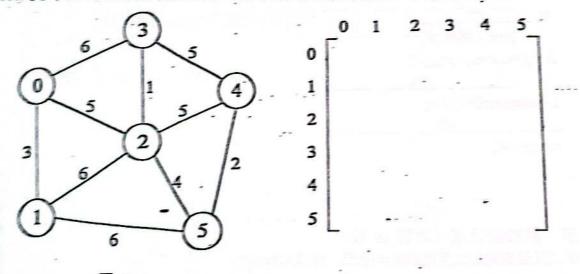


图 2

· 试用普里姆算法构造上图 2 所示的无向图的一禄最小代价生成树, 起点为 0 (要求 · 出构造过程)。

时元素序列49,38,66,82,13,53,3按教材中冒泡排序算法和快速排序算法进行排序。 (1) 写出第一越冒泡排序的结果; (2) 写出第一越快速排序的结果。

(数据结构) 第末考试 第 3 页 共 4 页

得分

四、算法填空题(每空2分,共8分)

试完善如下算法程序,实现在顺序表的位置 i 处插入数据 x,顺序表结构体如 typedef struct {

//判断下标 i 是否越界

//判断顺序表存储空间是否已满

intn; //顺序表中元素的数量

int maxLength; //顺序表的最大容量

int *element; //用于存储数据的数组首地址

} SeqList;

请完成如下算法填空:

Status Insert(SeqList *L, int i, int x)

{

}.

ł

int j; if (______(1)_____) return ERROR; if(______(2)_____) return ERROR; for (j = L->n-1; j>i; j--) _______(3) L->element[i+1] = x; ______(4) return OK;

得分

五、算法设计题(本题10分) 设二叉搜索树以二叉链表结构表示,结点结构体为: typedef struct {

int element;

BSTNode *Ichild;

BSTNode *rchild;

}BSTNode;

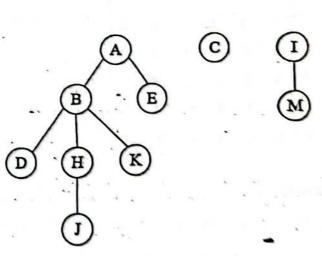
试设计算法输出二叉搜索树中的最大值和最小值,要求算法的时间复杂题 O(log2n)。

void PrintMaxMin(BSTNode *r) //r 为树根结点

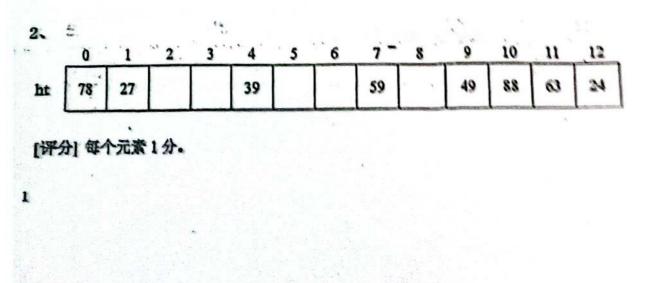
(数据结构)期末考试第4页共4页

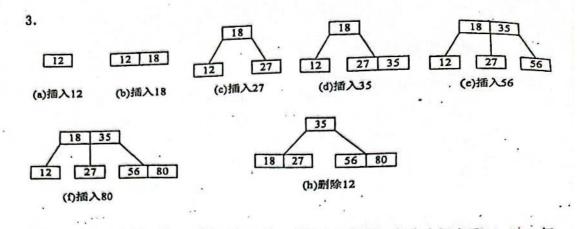
CS 扫描全能王 3亿人都在用的扫描App

一、填空题(每空2分,共20分)


1	2	. 3	~4	5	6	7	8	9	10
m-1	O(login)	数组/ 顺序	3	7	В	384	33	15	2

二、选择题(每小题2分,共20分)


1	2	3	4.	5	6	7	8	9	10
C.	В	С	С	A	D.	D	B	A	A


三、简答题(每题7分,共42分)

1.

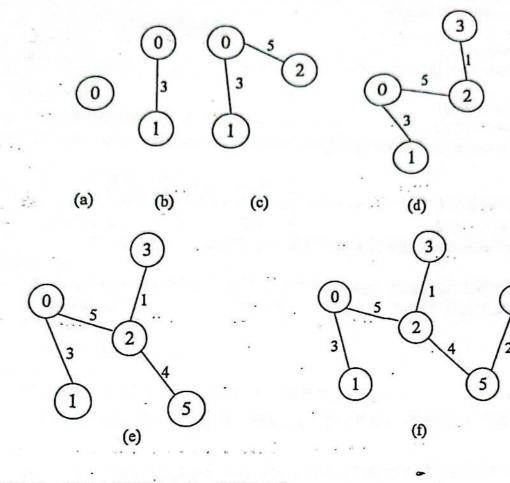
[评分] 第一棵树占5分, 第二、三棵树各占1分,

[评分] (f)全对也得4分,(h)全对得3分。若没有(f)和(h),但有中间步骤(a)-(e),每 个正确步骤给1分,但最多不超过3分。

5365							
	0	1	2	3	4	5	
0	-1	3	5	6	4 0	0	
1	3	-1	6	0	0	6	
2	5	6	-1	1	5	4	
3	6	0	1	-1	5 5 -1	0	
[.] 4	0	0	5	5	-1	2	•
5	Lo	6	4	3 6 0 1 -1 5 0	2	-1_	

1 100

-[评分] 错一个扣一分,直至扣完。


....

4.

. . .

2

[评分] (b)--(e)五个步骤每个1分,步骤(f) 3分

6.

5.

(4分)第一趟冒泡排序的结果: 38 49 66 13 53 3 82 (3分)第一趟快速排序的结果: 13 38 3 49 82 53 66

四、算法填空题(每空2分,共8分)

(1) i<-1|| i>L->n-1 (注意: ||左右交换位置都是正确的) (2) L->n== L->maxLength

(3) L->element[j+1] = L->element[j];

(4) L->n=L->n+1; //L->n++也是正确的

3

五、请按照程序说明编写程序(本题 10 分) void PrintMaxMin(BSTNode *r) { int min, max; BSTNode *p; р=т; while(p->lChild) 4分 p=p->lChild; min=p->element; //获得最小值 p=r; while(p->rChild) 4分 p=p->rChild; max = p->element; //获得最大值 printf("最小值是 %d\n", min); } 2分 printf("最大值是 %d\n", max); } · · ·

ł,

	院(系、专业)班级学号姓名
and an and a second second	请考生注意:
	1.答案请写在答题纸上,写在试卷纸上一律无效!
	2.考试完毕,请将答题纸和试卷纸交给监考老师,不得带出考场!
	□ 一、填空题(每空2分,共20分)
	497 1、若某算法的关键步骤执行次数为 f(n) = 50+50nlog2n+ 50n,则其渐近时间复
	▲ 杂度为 O()• 2、当线性表中查找运算很多时,为了提高线性表的运算效率,一般选择
-	存储表示法。
-	3、若循环队列结构体定义如下,队列满时队列中元素个数是。
	typedef struct queue{
1	int front, rear, maxSize;
-	ElemType *element;
	} Queue;
	4、后缀表达式:844+/32*+的值为。
	5、二维数组 A[10][20]首地址 200,每个元素占 1 个存储单元,则 A[6][12]的地址是
I	6、一棵二叉树中度为2的结点个数为1,度为1的结点个数为2,则该树叶子结点个
	数为•
I	7、对半搜索是一种效率较高的搜索方法,它要求线性表是有序表并采用存储
-	结构。
-	8、一棵二叉平衡树的先序遍历序列是 5,2,3,8,10,则其中序遍历序列是•
	9、有一棵5阶B-树高度为3,根结点的度至少为。
l	10、在散列表中,不同关键字经过散列函数映射到相同地址的现象称为。
	^{得分} 二、选择题(每小题 2 分,共 20 分)
	1、假设某个循环队列的头指针为 front, 尾指针为 rear, 队列长度为 maxSize, 则判断队列为空的条件为
	如于时秋列为至的余件为。 A、front—rear B、front—rear-1 C、(rear+1)%maxSize—front D、front—rear—0
	A non-lear D' non-lear-1 C (lear-1)/maxbize none 2 none in

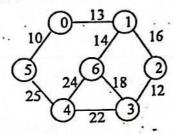
٦

(数据结构)期末考试第1页共4页

÷

. .

2、假设算法程序代码如下所示,则该算法的渐近时间复杂度为 i=1; x=0; do{ x++; i=3*i;} while(i<n); $D_{1} O(n^{3})$ $C, O(n^2)$ A, $O(\log_2 n)$ B, $O(\log_2 n)$ 3、具有 n 个顶点的强连通图中,边的条数最多为_ $D_n n(n-1)$ $C_{n(n-1)/2}$ A, n B, n² 4、对顺序表进行操作,以下说法错误的是_____ A、插入和删除元素的平均渐近时间复杂度相同 B、查找成功的平均渐近时间复杂度为 O(n) C、数据元素在表中有序排列 D、查找失败的渐近时间复杂度为 O(n) 5、给定一个 4 阶对称矩阵,约定以行优先规则存储下三角元素,则矩阵元素 a23 在一 维存储空间的下标k等于 D. 8 C. 7 A. 5 B. 6 6、在单链表中,向q指针指向的结点后插入一个p指针指向的新结点,应执行操作 A, q->link = p-> link; p-> link = q; B, $p \rightarrow link = q \rightarrow link; q = p;$ $C, q \rightarrow link = p \rightarrow link; p \rightarrow link = q;$ D, p -> link = q -> link; q -> link = p;7、在下列序列中, ____不是最大堆。 C、4,2,1,3 D. 4.3.2.1 A. 4.3.1.2 B, 4,2,3,1 8、关于拓扑排序算法,以下说法错误的是 (n为顶点数)。 A、当图以邻接矩阵方式存储时,其渐近时间复杂度为 O(n²) B、该算法可用于判断有向图是否有回路 C、当图以邻接表方式存储时,其渐近时间复杂度为 O(n²) D、该算法只有对有向无环图才能输出正确的拓扑序列 9、关于关键路径算法,以下说法错误的是 A、该算法仅可作用于有向无环图 B、关键路径是图中起点至终点的最短路径长度 C、关键路径可用于计算一个工程的最短工期 D、关键路径是图中起点至终点的最长路径长度 10、关于 Dijkstra 算法,以下说法错误的是 (n 为顶点个数)。 A、该算法执行1次就可以获得任意两顶点之间的最短路径 B、该算法需要执行n次才能获得任意两顶点之间的最短路径 C、该算法执行1次可以获得从指定顶点到其他 n-1 个顶点的最短路径 D、当以邻接矩阵存储图时,该算法时间复杂度为 O(n²)


(数据结构) 期末考试 第 2 页 共 4 页

三、简答题(每题8分,共40分) 得分 1、有长度为11的散列表,请采用二次探测法对依次输入的关键字12,7,48,66 建立散列表, 散列函数 H(key)=key%11. 7 8 9 10 6 5 0 1 2 3 4 23 55 89 46

2、 向空的 AVL 树中, 依次插入关键字 2、60、7、55、9, 画出 AVL 树的构建过程。

3、已知信号的权值集合为{4, 5, 6, 7, 10, 12, 17}, 请构造哈夫曼树并计算该哈夫 曼树的加权路径长度WPL。

4、用普里姆(Prim)算法,以0为源点,构造下图的最小代价生成树。 要求画出各步的结果,并且计算生成树的代价。

5、利用快速排序算法对序列 65、78、21、30、80、7、79、57、35、26 进行升序排序, 请写出前两趟排序结果。

得分

四、算法填空题(每空2分,共10分)

使用顺序表存储结构实现简单选择排序, 请完成下列算法.

int FindMin(List list, int startIndex) {

int i, minIndex = startIndex;

for(i=startIndex+1; i < list.n; i++)
{ if(______) ____ (2)___; }</pre>

return minIndex; }

void Swap(Entry* D, int i, int j)

 $\{ if(i=j) return; \}$

Entry temp =
$$*(D + i);$$

(D + i) = $(D + j);$

$$*(D+j) = temp;$$

void SelectSort(List* list)

{ int minIndex, startIndex = 0; while(__(3)__)

(数据结构)期末考试第3页共4页

- - - -

```
minIndex = (4)
        {
           Swap(list->D, startIndex, minIndex);
              (5) ; }
    }
       五、算法设计题(本题 10 分)
得分
      请设计实现以下算法,计算邻接表表示的图中任意顶点v的入度。
      int Degree(Graph g, int v)
       {
     • }
 提示:
 typedef struct enode //定义邻接表中边结点的结构体
 {
   int adjVex;
   struct enode* nextArc;
} ENode;
typedef struct graph //定义图的结构体
{
    int n;
   ENode** A;
} Graph;
```

(数据结构) 期末考试 第 4 页 共 4 页

填空题(每空2分,共20分) 3. 1 2 4 5 6 8 9 7 顺序 2,3,5,8,10 nlog₂n 顺序 maxSize-1 2 332 2 7. 15.

二、选择题(每小题2分,共20分)

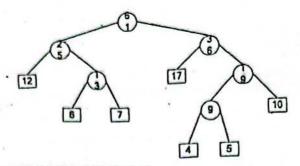
1	2	3	4	5	6	7	8	·9	10	
A	A	D	С	D	D	С	С	B	A	ŀ

三、简答题 (每题8分,共40分)

1.

1

0	1	2	3	4	5	• 6	7	8	9	10
55 [±]	23	89	46	48	12	and, r	7	49. F	• 1911	66


[评分] 每个空格 2 分, 共 8 分.

2. 0 0.0 [评分]前4步骤一步1.5分,最后一步2分

10

冲

突

WPL=(4+5)×4+(6+7+10)×3+(12+17)×2=163 [评分] 哈夫曼树型全对给6分, 错一处扣1分, 扣完为止; WPL占2分

4.

3.

以0为起点,依次为:

(0) $(\mathbf{0})$ \odot 3

此生成树的代价为 87。 [评分] 共6个步骤,对一个步骤得1分;代价计算对得2分。

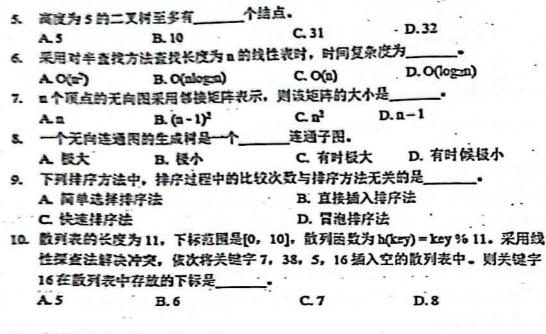
. 5.

2

第一趟:	57	-26	21	30	35	7	65	79	80	78
第二趟:	7	26	21	30	35	57	65	79	80	78

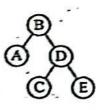
[评分] 每趟4分

- 四、算法填空题(每空2分,共10分)
- (1) list.D[i].key < list.D[minIndex].key
- (2) minIndex = i
- (3) startIndex < list->n-1
- (4) FindMin(*list, startIndex)
- (5) startIndex++


五、算法设计题(本题10分)

int Degree(Graph g, int v) { if ((v<0)||(v>g.n-1)) return -1; //2 分 int indegree= 0;//1 分 for(int i=0;i<g.n;i++) //2 分 { ENode *p = g.a[i];//2 分 while (p) //2 分 { if(p->adjVex=v) S. indegree++; p = p->nextarc; • } } return indegree;//1 分 }

	\TEX	页; 考试时间	110 分钟;	
	专业	班级	学号	
			1	
<u> </u>	填空题 (20)	分,共10题)		
		and the second	肉, 数据的存储结构	以及在数据上执行的运算。
2.	设顺序表长度为	5 100,若下标从 0 升	千始计,则删除元素。	ana 需要移动个元素。
3.	一棵二叉村中,	若叶结点的个数为	2011,则度为2的组	结点个数为
4.	有向图进行拓挂	卜排序时,没有输出	图中所有顶点,说明	周 图中存在•
5.	线性表采用二分	·搜索必须满足两个	条件:线性表关键:	字必须是:存储结构
	必须采用顺序在	好储结构。		
6.	二义搜索树的_		一个按关键字递增	非列的有序序列。
				79},
		函致值为3的有		
8.	快速排序算法等	F均情况下的渐近B	时间复杂皮为 O(
		去解决冲 突可能产生		
		存储结构有邻接矩网		
			45	12 · · · ·
=,	选择颜 (20	分,共10题)		
		and an approximation of the second	结束。这是氛法的_	
		the second s	C. 确定性	D. 可行性
2.		示的结点之后插入新		
	A. s->link=p;p-	>link=s;	B. s->link=	p->link;p->link=s;
	C. s->link=p->li	ink;p=s;	D.p->link=	s;s->link=p;
3.	栈和队列的共同	同点是•		
	A. 都是先进后		B. 都是先	Sector and
	C 口分许在些	点处插入和别除元	斋 D. 没有共	问点
		32*3+3/+的值		


1.

《 致提结构 B 》 期末试卷 (A) 第 1 页 共 6 页

三、 简答题 (30分, 共5题)

L. 有二叉树如图1所示,写出该二叉树的前序追历序列和中序遍历序列。

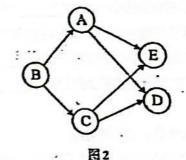
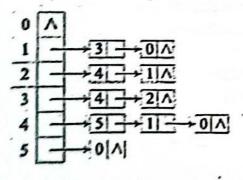



图1

2. 写出图 2 所有可能的拓扑排序。

3. 设有向图的邻接表表示如图 3 所示,请给出每个顶点的入度。

(数据结构B) 期末试卷(A) 第2页共6页

4. 空二叉搜索树中依次插入 33, 44, 99, 22, 11, 55, 画出最终所构建二叉搜索树。

- 5. 设W={5, 6, 7, 8, 9},
- (1) 面出由权值集合w构造的哈夫曼树。
- (2) 计算加权路径长度。

... 四、判断题(10分,共5题)

1. 线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。

- 2. 简单选择排序是稳定的排序算法。
- 3. 散列函数越复杂越好,因为这样随机性好,冲突概率小,

4. 完全二叉树一定存在皮为1的结点。

5. 在一非空二叉树的中序遍历中,根结点的右边是其右子树上的所有结点。

五、程序填空题(10分,共1题)

1. 以下程序是对半搜索的迭代实现,请填写完整。

BOOL BSearch2(List lst, KeyType k, T *x).

£ ····

, high = lst.Size -1; int mid, low=(1)_ while ((2)

{

-(5)

}

mid=(low+high)/2;

if (k<lst_Elements[mid].Key) high = (3) _____

else if ((4)_____) low = mid+1;

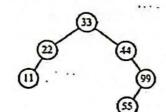
else {

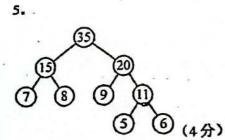
}

*x=ist.Elements[mid]; return TRUE;

(数据结构 B) 期末试卷 (A) 第 3 页 共 6 页

		- HI X	112	4				答案			4
一、境	空風(20分,扌	专10 题)					•			t
			12/					· ·		•	易
		• •							• •		
											1
						*					
	3	·· .						-			ì
				•				-			1
					•						2
											f
			-								,
				~			· · ·	•			
	1-	3	4			6	17	8	9	10	
1. 1. 1	2	13	14		5	1.	1	0	9		
辑	89	2010 .	有向回	-	有序	1.4	2	nlogn	二次	邻接	4


- ...


.

· A Star

公 扫描全能王^{*} 3亿人都在用的扫描 App 中序遍历序列: ABCDE (3分) 2. 每个1分, 全对再加2分 BACDE BACED BCADE BCAED

4.

WPL=(5+6)*3+ (7+8+9)*2=33+48=81 (2分)

四、判断题(10分,每题2分)

 1	2	3	4	5.
×	×.	.× .	. x	

五、程序填空题(10分,每空2分)

(1) 0

(2) low <= high

. fres .

....

(投船结构 B) 期末试卷 (A) 谷察 第 5 页 共 6 页

(3) mid-1.

1.

3

(4) k>lst.Elements[mid].Key

(5) return FALSE;

六、编程题(10分,共1题)

int Count(BTree Bi){ return Count 1 (Bt.Root);

int Count 1(BTNode* p){
 if(!p) return 0;
 else return Count1(p->LChild)+ Count1(p->RChild) + 1;
}

(数据结构B) 明水试验 (A) 答案 第6页 共6页

《数据结构 考试时间 本试卷共 页: 110 专业 班级 学号 姓名 -、填空题(20分,共10题) 1. 数据结构主要研究数据链多组结构,数据的存储结构以及在数据上执行的运算。 2. 设顺序表 A 长度为 100, 若下标从 0 开始计,则删除元素 A[10]需要移动 个元素。 2ºLo/no= nz+1 3. 一棵二叉树中,若叶结点的个数为2011;则度为2的结点个数为 t **禁** 连通子图. 4. 无向图的连同分量是其____ J 5. 线性表采用二分搜索必须满足两个条件:线性衰关键字必须是__ :存储结构 2 技 3 必须采用顺序存储结构。 H 1 t 不 7. 设有一组记录的关键字为{19, 14, 1, 69, 20, 27, 55, 79}, 散列函数为 h(key) = Ē key%li, 散列函数值为3的有____个。 È 套 8. 快速排序算法平均情况下的渐近时间复杂度为 O(_____ 答 9. 采用二次探查法解决冲突可能产生___ 聚集. : 8 10. 图常见的两种存储结构有邻接矩阵和 Ē 二、选择题(20分,共10题) 一个算法必须在执行有限步之后结束, 这是算法的 1. A. 有穷性 B. 正确性 C. 确定性 D. 可行性 2. 在指针 p 所指示的结点之后插入新结点 s 的操作是_ A. s->link=p;p->link=s; B.'s->link=p->link;p->link=s; C. s->link=p->link;p=s; D. p->link=s;s->link=p; 3. 栈和队列的共同点是_ A. 都是先进后出 B. 都是先进先出 C. 只允许在端点处插入和删除元素 D. 没有共同点 后缀表达式: 532*3+3/+的值为 A.18 B.7 C.9 D. 8 '《数据结构 B 》 初末试卷 (Ă) 第 1 页 共 4 页

41

н.: ;ж

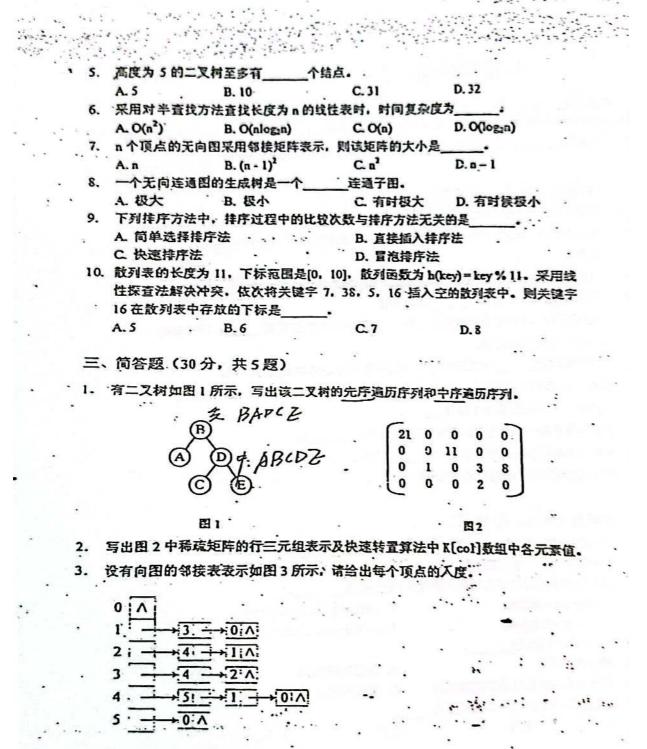


图3

4. 空二叉搜索树中依次插入 33, 44, 99, 22, 11, 55, 画出最终所构建二叉搜索树。
 (数据结构 B) 期末试卷(A) 第 2 页 共 4 页

CS 扫描全能王 3亿人都在用的扫描App 5. 设W={5,6,7,8,9},要求左子树根节点的权值小于等于右子树根节点权值。

(1) 画出由权值集合W构造的哈夫曼树。

(2) 计算加权路径长度。

四、判断题(10分,共5题,对的记".-/",错的记"×")

1. 线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。

2. 简单选择排序是稳定的排序算法.

3、 散列函数越复杂越好,因为这样随机性好,冲突概率小。

4. 完全二叉树一定存在度为1的结点.

5. 在一非空二叉树的中序遍历中,根结点的右边是其右子树上的所有结点。

五、程序填空题(10分,共1题)

2.4

in and

{

1. 以下程序是对半搜索的迭代实现, 请填写完整。 BOOL BSearch2(List lst, KeyType k, T*x)

> int mid, low=(1)_____, high = lst.Size-1; while ((2)_____)

> > mid=(low+high)/2;

```
if (k<lst.Elements[mid].Key) high = (3) _____
else if ((4) ______) low = mid+1;
else {
```

*x=lst.Elements[mid]; return TRUE;

. (5)_____

}

(数据结构 B) 期末试卷 (A) 第 3 页 共 4 页

六、编程题(10分,共1题)

1. 用二叉链表方式存储二叉树,试编写函数Count1,求一棵二叉树的结点总数,并编写 Count接口函数,让其调用Count1函数,

typedef int K;

typedef struct btnode{

K Element;

struct binode* LChild, *RChild;

}BTNode;

typedef struct btree (

struct binode* Root;

}BTree;

(数据结构 B) 期末试卷 (A) 第4页共4页

《 数据结构 》 答案

一、填空题(20分,共10题)

.

.

1. 12 - 1. T.

1	2	3	4 .	5.	6	7 .	8	.9	í0 .
逻辑	89	2010	有向回路	有序	中	2	nlog2n	二次	邻接表

二、选择题(20分,共10题)

1	2 .	3	4	5	6	7	8.	9	10
A	B: -	C	D	С	D	C.	B	A	D

2

1

5

3

三、简答题(30分,共5题)

1. 前序遍历序列: BADCE (3分) 中序遍历序列: ABCDE (3分) 2.

col 0 K[col] 0

 3. 毎个1分

 顶点
 入度

 0
 3

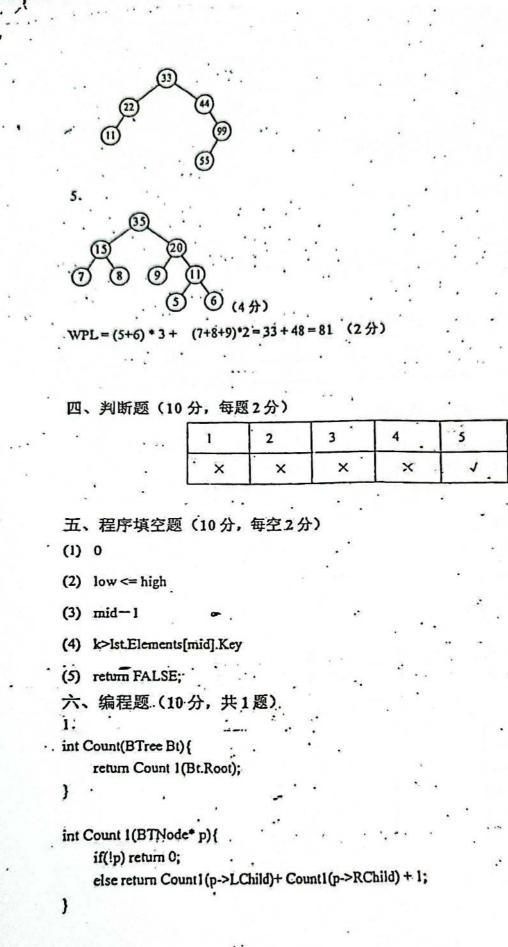
 1
 2

 2
 1

 3
 1

2

1 .


4

. .4

4.

51

1

2

《 数据结构 》

時(宗) 玑级 题号 -= 29 E. * 总介 将分 H . 53 注意事项: 請 ** (1) 全部试题解答都必须写在答卷上, 「「大法」説言、通用や法、他不許到 (2) 试卷和答卷均需写上学号姓名。考试结束, 将试卷和答卷 UT 起交上 得分 tt n 判断题(每小题2分,共10分)(请回答 或 ŕ X)1. 线性表顺序存储的优点是存储密度大,且插入和删除运算效素 1. (小2. 对二叉搜索树进行中序遍历, 初到的结点序列按升序排列。 (13. 若一棵二叉树根的右子边为空树,则其对应的森林只有一棵树。 行 (√)4: B-树是一种适合外存存储的数据结构。 题 (火)5. 求单源最短路径的迪杰斯特拉算法通过按边上权值的从小到大次 序, 逐一考察图中"边"的方式来产生最短路径。 得分 共10分) 洗择题(毎小题2分 pernent ! hu 设单链表的结点有两个域:element 和 link, 在指针 p 所指示的结点之 1. 后插入指针 q 所指示的新结点的操作是 B. g->link=p->link; p->link=q; A. q->link=p: p->link=q: D. p->link=q: q->link=p: C. q->link=p->link: p=q: 对二叉树中的一个结点 x, 设其在先序遍历序列中的序号为 pre(x). 在 1 后序序列中的序号为 post (x)。若树中结点 x 是结点 y 的祖先,则下列 结论中 是正确的. A: pre(x) >pre(y) 和 post(x) <post(y) B. pre(x)>pre(y)和 post(x)>post(y) (数据结构A) 试卷 第1 氟 共 4 66 Ø

C. pre(x) <pre(y) 和 post(x) <post(y) D. pre(x)(pre(y) 犯 post(x) >post(y) 3. 采用对半搜索方法查找长度为n的有序表时, 查找每个元素时平均比较 对应的二叉判定树的高度(假定高度大于等于2)。 次数应 B. 等于 A'小子 し、大子 D. 大于等于 4. 使用二次探查法构造散列表是为了避免 A. 基本冲突 B. 基本聚集 C. 二级聚集 双约317 D. 二次冲突 5. 从未排序序列中挑选元素,并将其依次放入己排序序列(初始时为空) 的一端,这种排序方法称为_____ A. 插入排序 B. 归并排序 C. 选择排序 D: 快速排序 D n-1 12.5 11-1 1-2 填空题(每空2分,共12分) acx6d21/-1. 设删除表中的每个元素的概率是相等的,则在长度为n的项序表中, 册 除一个元素平均需要移动的元素个数的计算公式为一次(1-1+)) 2. 表达式 2*c-b/d*2 的后缀形式是 ac*bd2*/-... 3. 设有三维数组 A[4][5][3], 每个元素占1个单元, 按石优先顺序存储(最 右下标变化最快),数组存储区的起始地址为b,则元素 A[2][4][2]的有, 储位置是为 计分。 4. 堆中根结点的编号为 0, 编号为 k 的结点的右孩子的编号为)上-12 5. 无同 图的邻接矩阵为对称矩阵。 6. 文件有下列四种基本的组织方式:1% 方列 打 家财产 # 2 、斜坡市 ,解答题(每题8分,共48分) 四、 ------2 3 1 84 设模式串 P="aabaaba", 设有主串 S= "aabaabaabaabaaba" (1) 计算模式串的失败函数和改进的失败函数的值。 6 α (2) 当 KMP 算法在主串的字符'x'处失配时,根据该字符的改进的失时 适应当分别由主串和模式串中的什么字符开始比较? | 承奇的值 4. Ь a.a:b a -aib;a (我起新的办 试卷 第2近共 (加)

7

n++; return true. 2. 补充完整下列置泡槽庄区法。函数 Swap(a, b)的功能是交换两个实在参 教的值: iemplate <crass T> veid BubbleSon(TA), im n) int i,j,last; i=n-l; while (i>0){ last=0; for (j=0; j<i; j++) if (ALIKAA) ALIANDI Swap(A[j],A[j+1]); last -; =14 Ast 1 9 算法设计题(12分 六、 在以二叉链表表示的二叉树类 BinaryTree 中增加一个公有成员函数 Degree2InTree()和一个私有递归成员函数 Degree2InTree(BTNode<T>*t)。 前者调用后者,求二叉树类的对象中度为2的结点数目。请分别实现这两 个函数。 函数原型为: template <class T>" BinaryTree<T>:: Degree2InTree(int 和 template <class T> 14 int BinaryTree<T>:: Degree2InTree(BTNode<T> * t) terphie - cless Ttemplate coloos T> int Rinary Tree < 7>:: Degree 2 In Tree (BTNode < 7> + 2) brony Tree LT> := Degrac 2 In Tree () nt if (1++ lchild 11 !t-> rchild) . return 0) return Degreez InTract root): else return Degrazintree (t-)(child)+ (数据结构A)试卷 第4 夏共4夏 Dogree>InTract++roluid)+1:

《数据结构》》

: 3

(考试时间 100 分钟)

班级姓名	学号	得分	
		ign	
一、 单项选择题(本大题) 项中只有一个符合题]	共 15 小题, 第小题 2 分, 共 30 分 目要求, 请将其代码填在题后的括) 在每小题列出 号内,错选或未出 	的四个选
1. 算法必须具备输入、输出和			C]
A. 计算方法	B. 排序方法		. · · · ·
C. 解决问题的有限	运算步骤 D. 程序设计方法	×.	• •
2. 有 n 个节点的顺序表中,算法	的时间复杂度是 O(1)的操作是		[A]
A. 访问第1个节点	(1≤i≤n)		•
B. 在第i个节点后指	插入一个新节点(1≤i≤n)		
C. 删除第i个节点	(1≤i≤n)		
D. 将n个节点从小3	间大排序	۰.	
3. 单链表的存储密度			[c j.
A. 大于1	B. 等于1		
C. 小于1	D. 不能确定		
4. 设将整数 1,2,3,4,5 依次进栈,	最后都出栈,出栈可以在任何时刻	(只要栈不空)进	行,则出栈序
列不可能是 -			[B.]
A. 23415	B. 54132	· .	• • • • •
- C. 23145	D. 15432		
5. 循环队列 SQ 的存储空间是数	t组 d[m],队头、队尾指针分别是 fm	ont 和 rear, 则执行	了出队后其头指
针 front 值是			
A. front=front+1	B. front=(front+1)%(m-1)	12	•
1,			τ.
C. front=(front-1)%m	D. front=(front+1)%m		Lato or the B
5. 在一个具有 [*] n 个结点的 [*]	有序单链表中插入一个新结点并	仍然保持有所能	
	· · · · · · · · · · · · · · · · · · ·		[B]
A. O(1) B. O(n)	$C. O(n^2)$ D. O(nlogn)		
. 设二维数组 ~A[0.m-1][01] 按行优 光 顺 序 存储	,则元素 A[i][j]的地址义
•	••		[B]
	. 1.		
			(A)

A. LOC(A[0][0])+	+(i*m+j) B. LOC(A[0][0])+(i*n+j)	
)+[(i-1)*n+j-1] D. LOC(A[0][0])+[(i-1)*m-	+j-1]
8. 一个非空广义表的表头	*	(D).
A. 一定是子表	B. 一定是原子	
C. 不能是子表	D. 可以是原子,也可以是子,	ĸ .
9. 具有n个节点的完全二	二又树的深度为	[A]
A. [log_(n+1)]-1		
C. logan	D. Llogan	1
10. 若要惟一地确定一棵	二叉树,只需知道该二叉树的	[D]
A. 前序序列	B. 中序序列	
C. 前序和后序序列	D. 中序和后序序列	
11. 在一个无向图中,所	有顶点的度数之和等于图的边数的	_ੴ [C']
A. 1/2	B. 1	
C. 2	D.4	
12. 拓扑排序运算只能用	æ : .	· · [C]
A. 带权有向图	B. 连通无向图	
C. 有向无环图	. D. 无向图	
13. 在所有排序方案	法中,关键字比较的次数与记录	的初始排列次序无关的是
		[D].
A. 希尔排序	· B. 冒泡排序、	
C. 插入排序		
•	中时间复杂度不受数据初始	* ***********************************
		[C]
A. 堆排序	B. 冒泡排序 、	terhel on and state
C. 直接选择排序	D. 快速排序	seven Stavelend
15. 二分查找要求节点		
A. 有序、顺序存储		K
C. 无序、顺序存储	诸 D. 无序、链接存储	ŧ.
	-	

.

2

•

۰.

•

.

-

•

.

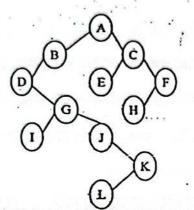
.

	将正确的答	深马江马	- 1 WOHIT	- IH H			
16. 数	居的逻辑结构分			•			
17 75	单链表中(假	沿住占地科	· 古夕称为 。		544 n 654544	占纳后做结占	的正有具
		Q SA MIN	чањи I		11) F // 18 50	品的庐继结点	的后可定。
. <u>p~next</u>	=p->next->next	•			? .		
18. 已经	知循环队列用数	女组 data[n]存	储元素值,	用 front,rear	分别作为头尾	皆针,则当前方	元素个数为
(rear-fro	nt+n)%n		. •			en e	*
19. 老	n 为主串长,	m 为子串长	,则串的柞	卜素匹配算法 :	最坏的情况下	需要比较字符的	的总次数力
·/24	(n-m+1) Xn	5				•	. 38.
20 F	⁻ 义表((a),((b),j,(); (((d)))))	• 		•
	••••				•		
21. 己	知二义树有 61 ·	个叶子节点,」	且仅有一个	该子的 节点数	为45,则总节	点数为166	<u>.</u>
22. 解	决计算机 与打印	和机之间速度	不匹配问题	,须要设置一	个数据缓冲区	,应是一个	队列_结构。
	• •	•					
· 23 .	n 个顶点 e	条边的图列	采用邻接	表存储,深	度优先遍历	「算法的时间	间复杂度为
-	O(n+e)	•					
•	2						
24 3-							
24. X	于 n 个关键字	的集合进行冒	泡排序,在	E最坏情况下)	所需要的时间	为 <u>O(n</u> ²	<u>)</u>
				1.1.1.2			-
25. 在	一个长度为n的	的顺序表中的	第i个元素	1.1.1.2			-
			第i个元素	1.1.1.2			-
25. 在	一个长度为n的	的顺序表中的	第i个元素	1.1.1.2			- 6
25. 在 移	一个长度为n的	的顺序表中的的	第i个元素 素。	(]≤i≤n) Ż	前插入一个う		- 6
25. 在 移	一个长度为 n ff 	9项序表中的 个元 本大题共 4	第i个元素 素 . 小题,;	(1≤i≤n)之 共 25 分)	前插入一个う	元素时, 需向)	6 - 24 - 25
25. 在 移		的顺序表中的 个元 \$大题共 4 矩阵, 画出其	第i个元素 素。 小题,; 其三元组法	(1≤i≤n)之 共 25 分) 存储表示(假t	前插入一个う	元素时, 需向)	6 - 24 - 25
25. 在 移		的顺序表中的 个元 \$大题共 4 矩阵, 画出其	第i个元素 素。 小题,; 其三元组法	(1≤i≤n)之 共 25 分) 存储表示(假t	前插入一个う	元素时, 需向)	6 - 24 - 25
25. 在 移		的顺序表中的 个元 \$大题共 4 矩阵, 画出其	第i个元素 素。 小题,; 其三元组法	(1≤i≤n)之 共 25 分) 存储表示(假t	前插入一个う	元素时, 需向)	6 - 24 - 25
25. 在 移		的顺序表中的 个元 \$大题共 4 矩阵, 画出其	第i个元素 素。 小题,; 其三元组法	(1≤i≤n)之 共 25 分) 存储表示(假t	前插入一个う	元素时, 需向)	6 - 24 - 25
25. 在 移		9.顺序表中的 个元 大题共 4 矩阵, 面出 0 14 0 0 0 0 0 0	第i个元素 素· 小题,; 其三元组法 0 0 0 -6 0 0 18 0	(1≤i≤n)之 共 25 分) 存储表示(假t	前插入一个う	元素时, 需向)	6 - 24 - 25
25. 在 移		9项序表中的 个元 大题共 4 矩阵, 画出 0 14 0 0 0 0 0 0	第i个元素 素· 小题,; 其三元组法 0 0 0 -6 0 0 18 0	(1≤i≤n)之 共 25 分) 存储表示(假t	前插入一个う	元素时, 需向)	6 - 24 - 25
25. 在 移		9.顺序表中的 个元 大题共 4 矩阵, 面出 0 14 0 0 0 0 0 0	第i个元素 素· 小题,; 其三元组法 0 0 0 -6 0 0 18 0	(1≤i≤n)之 共 25 分) 存储表示(假t	前插入一个う	元素时, 需向)	6 - 24 - 25
25. 在 移		9000F表中的 个元 本大题共 4 矩阵, 面出 0 14 0 0 0 0 15 0	第i个元素 素· 小题,; 其三元组法 0 0 0 -6 0 0 18 0	(1≤i≤n)之 共 25 分) 存储表示(假t	前插入一个う	元素时, 需向)	6 - 24 - 25
25. 在 移		9000F表中的 个元 本大题共 4 矩阵, 面出 0 14 0 0 0 0 15 0	第i个元素 素· 小题,; 其三元组法 0 0 0 -6 0 0 18 0	(1≤i≤n)之 共 25 分) 存储表示(假t	前插入一个う	元素时, 需向)	6 - 24 - 25
25. 在 移		9000F表中的 个元 本大题共 4 矩阵, 面出 0 14 0 0 0 0 15 0	第i个元素 素· 小题,; 其三元组法 0 0 0 -6 0 0 18 0	(1≤i≤n)之 共 25 分) 存储表示(假t	前插入一个う	元素时, 需向)	6 - 24 - 25
25. 在 移		9000F表中的 个元 本大题共 4 矩阵, 面出 0 14 0 0 0 0 15 0	第i个元素 素· 小题,; 其三元组法 0 0 0 -6 0 0 18 0	(1≤i≤n)之 共 25 分) 存储表示(假t	前插入一个う	元素时, 需向)	6 - 24 - 25
25. 在 移		9000F表中的 个元 本大题共 4 矩阵, 面出 0 14 0 0 0 0 15 0	第i个元素 素· 小题,; 其三元组法 0 0 0 -6 0 0 18 0	(1≤i≤n)之 共 25 分) 存储表示(假t	前插入一个う	元素时, 需向)	6 - 24 - 25

4

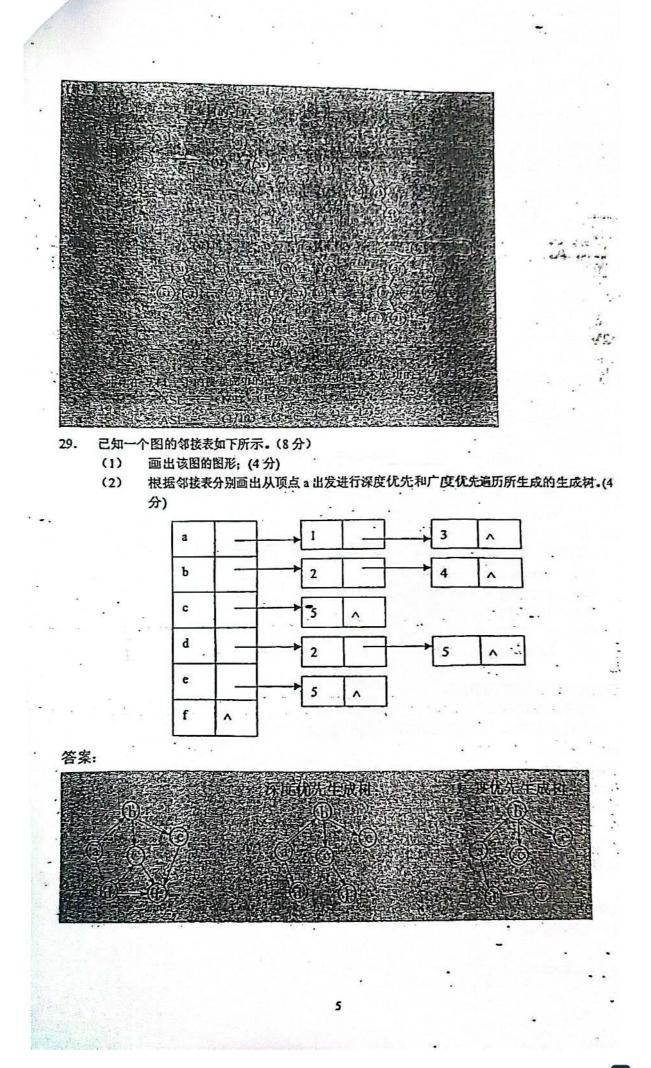
٠.

52


÷

CS 扫描全能王 3亿人都在用的扫描App

行号	列号	值
0	2	14
1	4	-6
2	0	7
2	5	24
3	3 .	18
41.	1 1 d 1	15


27. 已知一棵二叉树的中序序列和后序序列分别如下,请画出该二叉树。(5分) 中序序列: D 1 G J L K B A E C H F 后序序列: 1 L K J G D B E H F C A

答案:

- 28. 没有一个关键码的输入序列 (55,31,11,37,46,73,63,02,07), (7.分)
 - (1) 从空树开始构造平衡二叉搜索树, 画出每加入一个新结点时二义树的形态。若发生 不平衡, 指明需做的平衡旋转的类型及平衡旋转的结果。(3分)
 - (2) 计算该平衡二叉搜索树在等概率下的搜索成功的平均搜索长度和搜索不成功的平均 搜索长度。(4分)

四、 算法阅读题(本大题共3小题,每小题5分,共15分)

30. 设线性表的 n 个结点定义为 (ao,a),...,a,), 在顺序表上实现的插入和删除算法如下, 请在空白 处填入适当内容。(顺序表的最大可容纳项数为 MaxSize)

```
Template <class Type> int SeqList<Type>::Insert(Type &cx, int i) {
     If (i<0 || i>last+1 || last= (1) ) return 0;
```

Else {

}

}

Last++;

For(int j=last;j>i;j-) data[j]=____ (2) (3)

Return 1;

Template. <class Type> int seqList<Type>::Remove(Type &x){

```
int i=Find(x);
```

if(i>=0) { last-;

;j<=last;j++) data[j]=(5) for (int j = (4)

return 1;

return 0;

答案:

}

}

MaxSize-1 (1)

(2) data[j-1]

Data[i]=x (3)

(4) i

(5) data[j+1]

31. 阅读下面的算法,请回答下列问题:

(1) 试说明算法的功能.

```
(2) 当执行该程序时, 输入12345678-1; 输出什么结果? .
```

#define StackSize 200

typedef int DataType;

typedef.struct {

DataType data[StackSize]; .

int top:

}SeqStack;

void Push(SeqStack *s,DataType x)

```
· if(s->top!=StackSize-1)
```

```
s->data[++s->top]=x;
```

```
DataType Pop(SeqStack *s)
` { "
```

CS 扫描全能王 3亿人都在用的扫描App

```
if(s->top!=-1)
          return s->data[s->top-];
  }
 void main()
  {
    DataType i;
    SeqStack s;
    s.top=1;
 . ; scanf("%d",&i);
    while(i!=1)
        {
          push(&s,i);
         scanf("%d",&i);
       - }
while(s->top!=1)
        Ł
           i=Pop(&s);
           printf("%6d",i);
       }
```

```
答案:
```

}

(1)程序的功能是把输入的一串整数(用-1 做结束标记) , 按照 与输入相反的次序输出 用栈实现这一功能。

7

(2) 输出结果 8 7 6 5 4 3 2 1.

32. 已知二叉树的存储结构为二叉链表,阅读下面算法,说明该算法的功能, Template << lass Type> int Binary Tree <Type>::height(BinTreeNode <Type> *t){

if(t==NULL) return -1; int h1=height(t->leftChild); int hr=height(t->rightChild); return 1+(h1>hr?h1:hr);

答案:该算法的功能是统计二叉树的高度。

Jul . april a second

五、 算法设计题 (本题共10分)

33. 设一棵二叉树以二叉链表表示,试以成员函数形式编写有关二叉树的递归算法。

- (1) 统计二叉树中度为1的结点个数:(5分)
- (2) 统计二叉树中度为2的结点个数。(5分)
- (提示:'递归算法如 32 题所示)

解答:、(1)统计二叉树中度为1.的结点个数。 Template<class Type>

Int BinaryTree<Type> ::Degree1(BinTreeNode<Type> *t)const { If(t=NULL) return 0;

If(t>leftchild!=NULL: &&t>rightchild==NULL || t>leftchild==NULL &&t>rightchild!=NULL) Return 1+Degree1(t->leftchild)+Degree1(t->rightchild);

Return Degreel(t->leftchild)+Degreel(t->rightchild);

(2) 统计二叉树中度为2的结点个数。

Template<class Type>

} .

}

Int BinaryTree<Type> ::Degree2(BinTreeNode<Type> *t)const{

If(t=NULL) return 0;

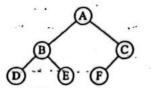
. .

If(t>leftchild!=NULL &&t>rightchild!=NULL) Keturn 1+Degree2(t>leftchild)+Degree2(t->rightchild); Return Degree2(t->leftchild)+Degree2(t->rightchild);

数据结构 如名 学号 班级 院(系) も 总分 E. 29 A 六 λ 机号 得分 9 填空题 MR. 写出表达式 a*b+c/d 的后级形式 100 【答案】 a b * c d / + 己知一无向图 G=(V, E),其中 V=(a, b, c, d, e), E=((a, b), (a, d), (a, c) (d, c), (b, e)), 现用某一种遍 历方法从顶点 a 开始遍历图,得到的序列为 abecd,则采用的是___ 遍历方法。 【答案】深度优先 在顺序表长度为n中,平均在表中插入一个元素需要移动元素的个数可用计算公式为_ 【答案】 $E_i = \sum_{n=1}^{n-1} \frac{1}{n+1} (n-i-1) = \frac{n}{2}$ 一个表长为n的线性表,其排序时间最快为_ 【答案】0(n) 选择题 · 具有 n 个顶点的有向完全图中,边的总数为()条. B) n (n-1) A) n (n+1) C) n (n-1) /2 D) n (n+1) /2 【答案】B 设一个栈输入序列是1、2、3、4、5,则下列序列中不可能是栈的输出序列是(). B) 15432 A) 32541 D) 23145 C) 14523 【答案】C 只能是14532 二叉树的前序遍历为-EFHIGJK,中序遍历序列为 HFIEJKG。该二叉树根结点的右子树的根是(B) F A) E D) H C) G

65

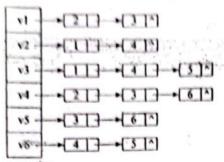
【答案】C 对有14个元素的有序表A[1]-A[14]作对半查找,查找元素A[4]时的被比较元素依次为() A. A[1], A[2], A[3], A[4] B. A[7], A[3], A[5], A[4] C. A[1], A[2], A[7], A[4] D. A[7], [A5], A[3], A[4] 【答案】B 第1次:范围[1, 14],中间元素是(1+14)/2=7 第2次: 范围[1, 6], 中间元素是(1+6)/2 = 3 第3次:范围[4, 6],中间元素是(4+6)/2=5 第4次:范围[4, 4],中间元紫是(4+4)/2=4 设有一个长度为 100 且已排好序的表,用对半搜索进行查找,若搜索不成功,则至少要比较____次。 () A. 9 D. 6 B. 8 C. 7 【答案】D 长度为 100 的有序表进行对半查找,查找失败时比较 [log, 100] 次或者 [log, 100]+1次,即6或7次。


简答题

用一维数组存放的一棵完全二叉树如图所示:

A	В	С	D	E	F

图


写出前序、中序、后序遍历该二叉树时访问结点的顺序。 【答案】

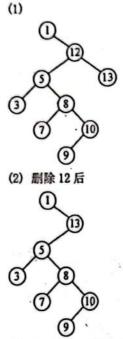
前序遍历序列: ABDECF 中序遍历序列: DBEAFC 后序遍历序列: DEBFCA

图的邻接表表示一个给定的无向图.

(1)给出从顶点 v1 开始,用深度优先搜索法进行遍历时的顶点序列;(2)给出从顶点 v1 开始,用广度优先搜索法进行遍历时的顶点序列。

【答案】

深度优先遍历序列: v1, v2, v4, v3, v5, v6 广度优先遍历序列: v1, v2, v3, v4, v5, v6


解答题

1.34

12 15

6)

CS CamScanner

对图的 3 阶 B-树, 依次执行下列操作, 画出各步操作的结果. (1) 插入 90; (2) 插入 25; (3) 插入 45; (4) 删除 60;

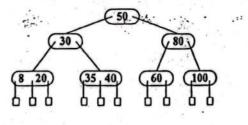
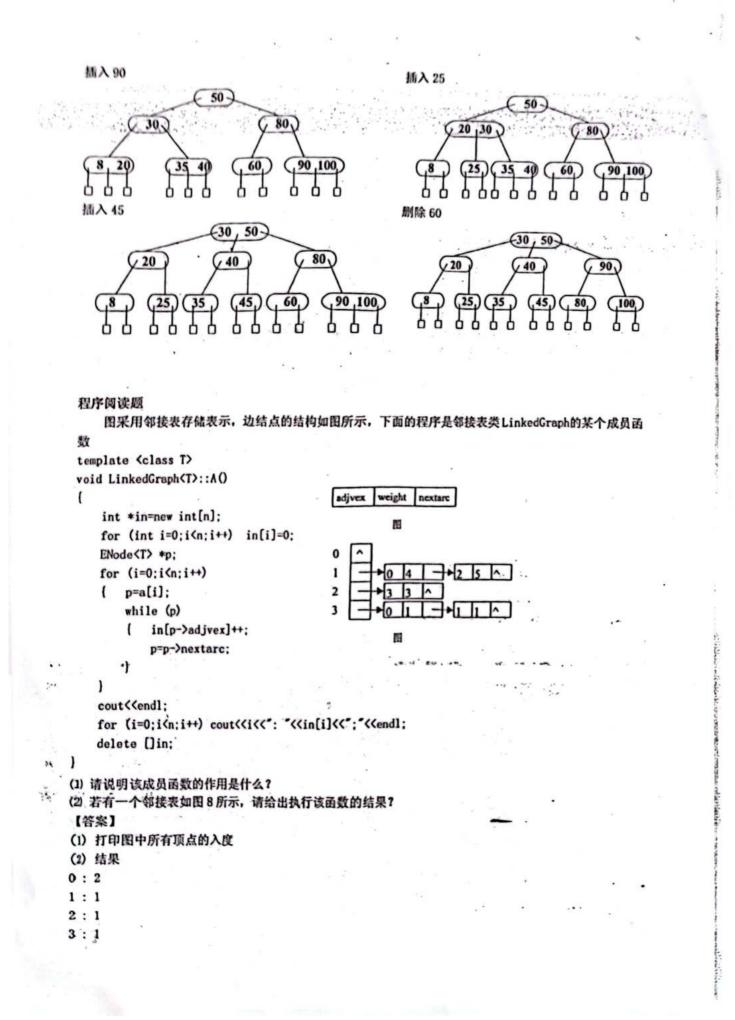



图 【答案】

算法顾

```
在以二叉链表表示的二叉树类BinaryTree 中增加一个成员函数LeavesInTree()。该模板函数为递归
函数,其功能是求二叉树类BinaryTree 的对象中叶子结点的数目,实现该递归函数,函数原型如下,
```

template (class T)

int BinaryTree(T);: LeavesInTree()

【答案】

```
template (class T)
```

int BinaryTree(T)::LeavesInTree()

```
return Leaf (root);
```

```
1 ....
```

{

```
template <class T>
int BinaryTree<T>::Leaf(BTNode<T> *t)
{
```

```
if (t = NULL) return 0;
```

if ((t-)Child = NULL)&&(t-)rChild = NULL) return 1;

```
return Leaf(t->1Child) + Leaf(t->rChild);
```

```
1
```

在不带表头结点的单链表中删除一个关键字值为 x 的元素。函数原型如下: template <class T> bool SingleList<T>::Delete(T x)

【答案】

}

```
template <class T>
bool SingleList<T>::Delete(T x)
{
    BTNode<T> *p = first;
    BTNode<T> *q = NULL;
   while (p&&p->data=x)
    {
         q = p;
         p = p->link;
    }.
  if (1p) return false;
 if (q)
    \{q \ge link = p \ge link;\}
    else
    {first=p->link;}
   delete p;
   n--;
   return true;
```

1

班	Ŗ		学号			姓名		征	分		
		-			1		Γ.				
题号	-	-	1	29	五	-六	七	^	九	+	
得分					• 1						·
-、 #	[空题 (5小题,	每小题	2分,共	(12分)	•	;	·			
1. 顺序	表中各元	专之间	的地址是								
	n个表并在				Tin at the	的新生物人	も大本ル	则应亚	щ.	·**'	
	2 11	F, HH 9	L理时在4	RINKD	和农的	8奴都会;	初命变化	,则应未	'я	存	
储结构	•										
3. 栈的	ITOP运算	的功能是	E		_,但此	运算不量]除栈顶;	元素.			
4. XIB	进行后序	追历时.	最后出	现的结晶	5. 在先	序遍历中	将	H	IQ.		
						•				ы	
5. AOV	网络中活	动之间的	1现先天教	成是一种			,它具有	1 传递性和	中反目反	住.	
6. 若待	排序序列	为081	15 8 9	<u>15</u> 71.	经过某种	排序后,	得到的	序列为C	891 <u>5</u>	15 71 81	,
则此排用	手算法的和	急定性如	何? 答案	是		•					
				-							
- M	顶洪投	6 (7 .L.	陌 后 1	5000	1114	41	ē.		115*		
	项选择题										
	项选择是 和r所指						以下错误	的程序段	是		
		结点的失		を換且不			•	的程序段	是		
		结点的失	后位置交	と換且不	出现断备	ŧ现象, [•	的程序段 → …	. 是		
		结点的失	后位置交	と換且不	出现断备	ŧ现象, [•	的程序段 → …	是		•
1. 将q (A) q-	和 r 所指 … link=r→	结点的先 dat → P link;	后位置交 a link p→link=	z换且不 data }→[q q τ; 1		ŧ现象,则 data ┝→[•	的程序段 → …	是		•
1. 将q (A) q→ (B) r→	和 r 所指 … link=r→ link=q:	结点的先 dat → P link; q→lin	后位置爻 a link ↓ ↓ p→link= k=r→lin	Σ换且不 data]→[q -T; 1 k; P;	link link 」 」 」 」 」 」 」 」 」	ŧ现象,↓ data ↓→〔 	•	的程序段 → …	是	- ·	•
1.将q (A)q→ (B)r→ (C)p→	和 r 所指 … link=r link=q; link=r;	结点的失 dat → P link; q→lin q→lin	に居位置交 a link p→link= k=r→lin k=r→lin	と換且不 4曲 4 	出现断针 link r→link= -link=q +link=q	ŧ现象,归 data -→[•	的程序段 → …	是		•
1.将q (A)q- (B)r→ (C)p→ (D)q→	和 r 所指 link=r→ link=q; link=r; link=r→	结点的块 dat p link; q→lin q→lin link;	にたで置す a link p→link= k=r→lin k=r→lin r→link=	と換且不 4 4 	link r→link= →link=q →link=n	ŧ现象,则 data ↓ ↓ ↓ ↓ 「 す ; ; ; ; ;	Jiak				•
1. 将q (A) q→ (B) r→ (C) p→ (D) q→ 2. WIN	和 r 所指 link=r- link=q: link=r; link=r+ DOWS操	结点的块 dat p link; q→lin q→lin link;	点位置交 a link p→link= k=r→lin k=r→lin r→link= 项面调B	t换且不 data 子→【 す; 1 k; 2 k; 1 k; 1 q; 1 th, 先	Link Link r→link= →link= →link= x先服分	ŧ现象,以 data 」 「 「 「 「 」 「 」 「 」 「 」 「 」		→ … 的典型应	用实例。	-•	•
1. 将 q (A) q→ (B) r→ (C) p→ (D) q→ 2. WIN (A) 数	和 r 所指 link=r→ link=q; link=r; link=r→ DOWS操 组	结点的块 dat p link; q→lin q→lin link; f系统中	点位置交 a link p→link= k=r→lin k=r→lin r→link= 可面调度 (B) 均	2换且不 4 data q q T; 1 k; p; q; r kk; r q; r t t t t t t	Link Link r→link= →link= →link= x先服分	ŧ现象,则 data ↓ ↓ ↓ ↓ 「 す ; ; ; ; ;		→ … 的典型应		•	
1. 将 q (A) q→ (B) r→ (C) p→ (D) q→ 2. WIN (A) 数 3. 中级表	和 r 所指 link=r- link=q: link=r; link=r; DOWS操 组 远式A+(结点的块 dat p link; q→lin q→lin link; ff系统中 B-C/D)+t	点位置交 a link p→link= k=r→lin k=r→lin r→link= 可面调度 (B) 均	2换且不 4 data q q T; 1 k; p; q; r kk; r q; r t t t t t t	link r-link= -link= +link= o-link= 来先服务	ŧ现象,以 data 		→ … 的典型应 (D	用实例。	-	
 将q (A) q→ (B) r→ (C) p→ (D) q→ WIN (A) 数 (A) AB 	和 r 所指 link=r→ link=q; link=r; link=r→ DOWS操 组 达式A+(CD/*E+-	结点的块 dat p link; q→lin q→lin link; ff系统中 B-C/D)+t	点位置交 a link p→link= k=r→lin k=r→lin r→link= 可面调度 (B) 均	2换且不 4 data q q T; 1 k; p; q; r kk; r q; r t t t t t t	Link r→link= -link= →link= →link= ·来先服分	<pre></pre>	liak 	→ … 的典型应 〔D	用实例。	-	а Э
 将 q (A) q (B) r (C) p (D) q WIN (A) 数 (A) AB (C) AB 	和 r 所指 link=r→ link=q; link=r; link=r; du CD/*E+- CD+-*E/	结点的块 dat p link; q→lin q→lin link; 作系统中 B-C/D)+	点位置交 a link p→link= k=r→lin k=r→lin r→link= 可面调四 (B) 均 3的后缀死	t换且不 data q 1 r;;;; r k;;; f, f, f, f, f, f, f, f, f, f, f, f, f,	link r→link= -link= →link= →link= ·*未先服务	ŧ现象, 岐 data data r r		→ … 的典型应 〔D	用实例。	-	
 将 q (A) q⁻¹ (B) r⁻¹ (C) p⁻¹ (D) q⁻¹ WIN (A) 数 (A) 数 (A) AB (C) AB (C) AB 	和 r 所指 link=r- link=q: link=r; link=r; DOWS操 组 达式A+(CD/+E+- CD+-+E/ 空二叉权	结点的块 dat p link; q→lin q→lin link; ff系统中 B-C/D)+l	点位置交 a link p→link= k=r→lin r→link= 可面调也 (B)均 的后缀死 注遍历的/	t换且不 data q 1 q 1 r; p; r; r; r; r; r, t, t, t, t, t, t, t, t, t, t	Link r→link= →link= →link= →link= →link= 小 小 和 長 長	<pre> till till</pre>		→ … (D	用实例.) 二义树		
 将q (A) q⁻¹ (B) r⁻¹ (C) p⁻¹ (D) q⁻¹ (A) 数 (A) 数 (A) AB (C) AB (A) AB (A) AB (A) AB 	和 r 所指 link=r→ link=q: link=r; link=r; DOWS操 组 达式A+(CD/*E+- CD+*E/ 空二叉构」	结点的块 dat p link; q→lin q→lin link; ff系统中 B-C/D)+f 出行中f	点位置交 a link p→link= k=r→lin r→link= 可 (B) 均 的后缀死 差遍历的) 结点	t换且不 data q 1 p:r: p:r: p:r: p: p: p: p: p: p: p: p: p: p	Link Link r→link= →link= →link= →link= 和 (B) 只有	ŧ现象, ℓ data data data r r r		→ … (D 全部结点	用实例。) 二义树	ä	
 将 q (A) q⁻¹ (B) r⁻¹ (C) p⁻¹ (D) q⁻¹ WIN (A) 数 (A) 数 (A) AB (C) AB (C) AB 	和 r 所指 link=r→ link=q: link=r; link=r; DOWS操 组 达式A+(CD/*E+- CD+*E/ 空二叉构」	结点的块 dat p link; q→lin q→lin link; ff系统中 B-C/D)+f 出行中f	点位置交 a link p→link= k=r→lin r→link= 可 (B) 均 的后缀死 差遍历的) 结点	t换且不 q 1 p:r: q 1 p:r: r k:;;;t, t, t, t, t, t, t, t, t, t,	Link Link r→link= →link= →link= →link= 和 (B) 只有	ŧ现象, ℓ data data data r r r		→ … (D 全部结点	用实例。) 二义树	ä	

.

.....

٠

•]

1

1

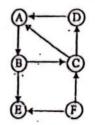
. .

ł

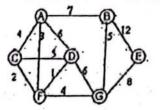
-

i.

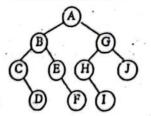
<u>.</u>.


5. 有个非导元素的移动矩阵Aman 采用三元	组表示,则快速转置的时间复杂度是
(A) O(m×n)	(B) O(m+n)
(C) O(n+0)	(D) O(n×i)
 二叉搜索树中,最小元繁结点的左子树 	,它的右子树。
(A) 一定为空, 不一定为空	(B) 不一定为空, 一定不为空
(C)一定不为空,不一定为空	(D) 不一定为空, 不一定为空
7. 对非连通图进行广度优先搜索得到	<u>.</u>
(A) 村	(B) 森林
(C) 生成树	(D) 生成森林

三、筒答题(8小题;每小题6分,共48分)


1. 输入序列为 (21 60 12 50 45 80), 请先建立二叉搜索树, 再从此树上将60删除。

 2. 设数列表的长度为 11, 若采用双散列法解决冲突, 试以数列函数 h₁(key)=key%11, h₂(key)=key%9+1, 从空表开始, 依次插入下列关键字值序列: 81 25 80 35 60 45 , 建立数列表。请面出该数列表。


3. 有向图见下图。给出强连通分量的定义并画出强连通分量。

4. 使用普里姆 (Prim) 算法以A为源点,构造下图的最小代价生成树, 画出各步的结果。

5. 画出下图中的二叉树所对应的森林;若 X 结点是其双亲 Y 的右孩子,则在对应的树或森 林中 X 是 Y 的什么结点?

6. 当以边<0,1>, <1,3>, <1,2>, <2,5>, <5,0>, <4,2>, <4,3>, <2,0>的次序从只有6个顶 点没有边的图开始,通过插入这些边,建立邻接表。

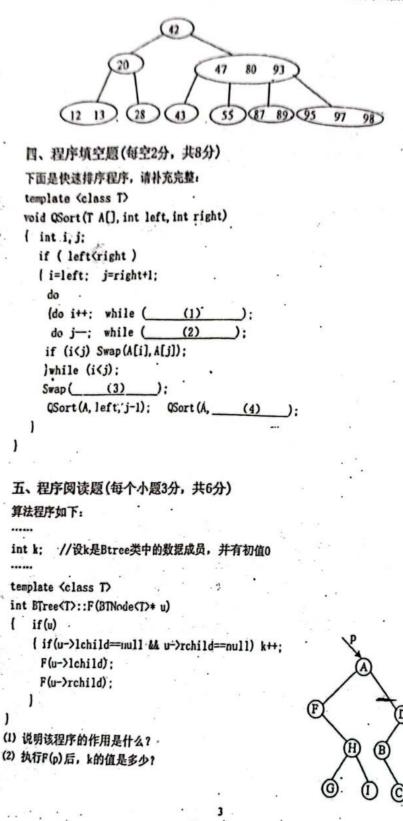
2

CS CamScanner

(1) 画出该邻接表;

(2) 在所建立的邻接表上,进行以0为起始顶点的深度优先追历,写出遍历结果。

7. 设字符集合5=(A, B, C, D, E), 各字符的使用频率为8=(6, 7, 19, 6, 3)


(1) 而出哈夫曼将:(生成新结点时,新结点的左子将很的权值小于等于右子将根的权值)

(2) 求该哈夫曼柯的帮权路径长度;

.

)

8. 设有四阶B-树,如下图所示(未而出失败结点)。而出插入关键字96后的B-树」

73

E

-

1.1

六、程序设计题(12分)

已知带裴头的单键表(SingleList)的结点(Node)有两个私有的数据成员; data 和 link, 其中 data 是结点关键字, link 是指向 Node 的指针. SingleList 中私有的数据成员有两个; first 和 length. 其中 first 是指向第一个结点的指针, length 是当前单链表中结点的个数, 请完成;

(1) 写出结点 Node 和单链表 SingleList 的 C++类模板, (Node 只要求写出私有的数据成员, SingleList 不用从 LinearList 继承,其成员函数只要列出(2)中的 Insert 函数即可)
(2) 假设单链表中的结点是有序递增的,设计成员函数 Insert (const Tax),在单链表中插入元素x 且保证链表的有序性,(单链表中任意两个结点的关键字都不相等)

CS CamScanner

数据结构B 答案

一、填空题(6小题,每小题2分,共12分)

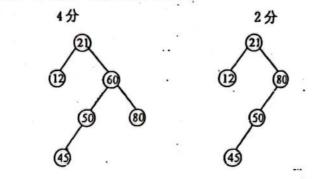
1. 进续的

2. 佳式

3. 取得栈顶元素的值

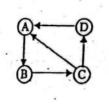
4. 最先

5. 拟序


6. 不稳定

1.

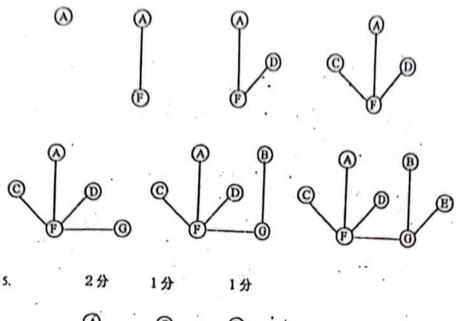
二、单项选择题(7小题,每小题2分,共14分)

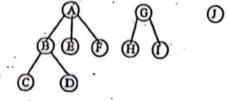

BCBDCAD

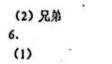
三、简答题(8小题,1每题6分,共48分)

				(母个1分)						
0	1	2	3	4.	. 5	6	7	. 8	9	10
	80	35	25	81	60	45				1

3. (1) 有向图的一个极大强连通子图称为该图的一个强连通分量。(2分)
 (2) (4分)

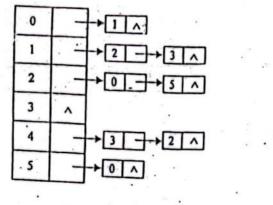



E F

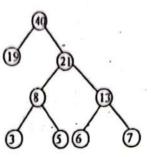


:

(毎歩1分)


4

(2分)


(4分)

(2分)

2

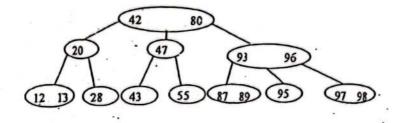
(2) 012534

(2) WPL=(3+5+6+7)*3+19*1=82
8. (1) 插入 96

(2分) (第一次分裂 4分,第二次分裂 2分)

(每空2分)

(1分)


(6分)

(2分)

3

CS CamScanner

(4分)

四、程序填空题(8分) (1) A[i]<A[left] (2) A[j]>A[left] (3) A[left], A[j] (4) j+1, right

五、程序阅读题(6分) (1) 计算叶子结点数 (2) 4 六、程序设计题(12分) (1) template <class T> class SingleList; template <class T> class Node

· -te:

7. (1)

```
class SingleList
  { public:
                                                                          (2分)
       SingleList();
      -SingleList(); .
      bool Insert(const T& x);
    private:
      Node<>> first;
      int length;
  •
 );'
  (2) template<class T>
 BOOL SingleList<T>::Insert(const T&x)
 {
                                                                                     2
   Node<T>* p,q,r;
   p=first>link;
   q=first;
   while(!p&&p->data<x)
                                                                       (3分)
   ( q=p;
     p=p->link;
  }
  if(p>data=x) return false;
  r=new Node<T>;
  r->data=x;
                                                                       (2分)
  r>link=q>link;
                                                                        ---
                                                                       (2分)
  q->link=r;
  length++;
                                                                      ·(1分)
  return true;
)
```


とないことを見たいというなんないで